Cargando…
Hidden Treasures in “Ancient” Microarrays: Gene-Expression Portrays Biology and Potential Resistance Pathways of Major Lung Cancer Subtypes and Normal Tissue
Objective: Novel statistical methods and increasingly more accurate gene annotations can transform “old” biological data into a renewed source of knowledge with potential clinical relevance. Here, we provide an in silico proof-of-concept by extracting novel information from a high-quality mRNA expre...
Autores principales: | Kerkentzes, Konstantinos, Lagani, Vincenzo, Tsamardinos, Ioannis, Vyberg, Mogens, Røe, Oluf Dimitri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178426/ https://www.ncbi.nlm.nih.gov/pubmed/25325012 http://dx.doi.org/10.3389/fonc.2014.00251 |
Ejemplares similares
-
A Validated Clinical Risk Prediction Model for Lung Cancer in Smokers of All Ages and Exposure Types: A HUNT Study
por: Markaki, Maria, et al.
Publicado: (2018) -
Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
por: Papoutsoglou, Georgios, et al.
Publicado: (2021) -
Hidden Treasures
Publicado: (1862) -
Hidden Treasures
por: Hall, W. W.
Publicado: (1879) -
‘Reduced’ HUNT model outperforms NLST and NELSON study criteria in predicting lung cancer in the Danish screening trial
por: Røe, Oluf Dimitri, et al.
Publicado: (2019)