Cargando…
Automated Detection and Recognition of Wildlife Using Thermal Cameras
In agricultural mowing operations, thousands of animals are injured or killed each year, due to the increased working widths and speeds of agricultural machinery. Detection and recognition of wildlife within the agricultural fields is important to reduce wildlife mortality and, thereby, promote wild...
Autores principales: | Christiansen, Peter, Steen, Kim Arild, Jørgensen, Rasmus Nyholm, Karstoft, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179058/ https://www.ncbi.nlm.nih.gov/pubmed/25196105 http://dx.doi.org/10.3390/s140813778 |
Ejemplares similares
-
FieldSAFE: Dataset for Obstacle Detection in Agriculture
por: Kragh, Mikkel Fly, et al.
Publicado: (2017) -
Automatic Detection of Animals in Mowing Operations Using Thermal Cameras
por: Steen, Kim Arild, et al.
Publicado: (2012) -
DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field
por: Christiansen, Peter, et al.
Publicado: (2016) -
Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks
por: Skovsen, Søren, et al.
Publicado: (2017) -
A Vocal-Based Analytical Method for Goose Behaviour Recognition
por: Steen, Kim Arild, et al.
Publicado: (2012)