Cargando…
Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms
The quantification of aboveground biomass using remote sensing is critical for better understanding the role of forests in carbon sequestration and for informed sustainable management. Although remote sensing techniques have been proven useful in assessing forest biomass in general, more is required...
Autores principales: | Dube, Timothy, Mutanga, Onisimo, Adam, Elhadi, Ismail, Riyad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179085/ https://www.ncbi.nlm.nih.gov/pubmed/25140631 http://dx.doi.org/10.3390/s140815348 |
Ejemplares similares
-
Suitability of resampled multispectral datasets for mapping flowering plants in the Kenyan savannah
por: Makori, David Masereti, et al.
Publicado: (2020) -
Interannual Change Detection of Mediterranean Seagrasses Using RapidEye Image Time Series
por: Traganos, Dimosthenis, et al.
Publicado: (2018) -
Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China
por: Jiang, Fugen, et al.
Publicado: (2022) -
Field methods for above and belowground biomass estimation in plantation forests
por: Huynh, Trinh, et al.
Publicado: (2020) -
Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya
por: Richard, Kyalo, et al.
Publicado: (2017)