Cargando…

Transcriptional Profiling and Dynamical Regulation Analysis Identify Potential Kernel Target Genes of SCYL1-BP1 in HEK293T Cells

SCYL1-BP1 is thought to function in the p53 pathway through Mdm2 and hPirh2, and mutations in SCYL1-BP1 are associated with premature aging syndromes such as Geroderma Osteodysplasticum; however, these mechanisms are unclear. Here, we report significant alterations in miRNA expression levels when SC...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yang, Chen, Xiaomei, Chen, Xiaojing, Chen, Qilong, Huo, Keke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Molecular and Cellular Biology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179138/
https://www.ncbi.nlm.nih.gov/pubmed/25234469
http://dx.doi.org/10.14348/molcells.2014.0184
Descripción
Sumario:SCYL1-BP1 is thought to function in the p53 pathway through Mdm2 and hPirh2, and mutations in SCYL1-BP1 are associated with premature aging syndromes such as Geroderma Osteodysplasticum; however, these mechanisms are unclear. Here, we report significant alterations in miRNA expression levels when SCYL1-BP1 expression was inhibited by RNA interference in HEK293T cells. We functionally characterized the effects of potential kernel miRNA-target genes by miRNA-target network and protein-protein interaction network analysis. Importantly, we showed the diminished SCYL1-BP1 dramatically reduced the expression levels of EEA1, BMPR2 and BRCA2 in HEK293T cells. Thus, we infer that SCYL1-BP1 plays a critical function in HEK293T cell development and directly regulates miRNA-target genes, including, but not limited to, EEA1, BMPR2, and BRCA2, suggesting a new strategy for investigating the molecular mechanism of SCYL1-BP1.