Cargando…
Error estimates for the analysis of differential expression from RNA-seq count data
Background. A number of algorithms exist for analysing RNA-sequencing data to infer profiles of differential gene expression. Problems inherent in building algorithms around statistical models of over dispersed count data are formidable and frequently lead to non-uniform p-value distributions for nu...
Autores principales: | Burden, Conrad J., Qureshi, Sumaira E., Wilson, Susan R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179614/ https://www.ncbi.nlm.nih.gov/pubmed/25337456 http://dx.doi.org/10.7717/peerj.576 |
Ejemplares similares
-
Power analysis and sample size estimation for RNA-Seq differential expression
por: Ching, Travers, et al.
Publicado: (2014) -
Variance component testing for identifying differentially expressed genes in RNA-seq data
por: Yang, Sheng, et al.
Publicado: (2017) -
How to normalize metatranscriptomic count data for differential expression analysis
por: Klingenberg, Heiner, et al.
Publicado: (2017) -
Getting the most out of RNA-seq data analysis
por: Khang, Tsung Fei, et al.
Publicado: (2015) -
Identifying stably expressed genes from multiple RNA-Seq data sets
por: Zhuo, Bin, et al.
Publicado: (2016)