Cargando…
Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles
Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn ((68)Zn) from...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Informa UK Ltd.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179643/ https://www.ncbi.nlm.nih.gov/pubmed/24266363 http://dx.doi.org/10.3109/17435390.2013.855832 |
_version_ | 1782337127957135360 |
---|---|
author | Osmond-McLeod, Megan J. Oytam, Yalchin Kirby, Jason K. Gomez-Fernandez, Laura Baxter, Brent McCall, Maxine J. |
author_facet | Osmond-McLeod, Megan J. Oytam, Yalchin Kirby, Jason K. Gomez-Fernandez, Laura Baxter, Brent McCall, Maxine J. |
author_sort | Osmond-McLeod, Megan J. |
collection | PubMed |
description | Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn ((68)Zn) from (68)ZnO nano-sized and larger particles in sunscreens. Sunscreens were applied to the backs of virgin or pregnant hairless mice over four days. Control groups received topical applications of the sunscreen formulation containing no ZnO particles, or no treatment. Major organs were assessed for changes in (68)Zn/(64)Zn ratios, (68)Zn tracer and total Zn concentrations. Short-term biological impact was assessed by measuring levels of serum amyloid A in blood, and by performing whole-genome transcriptional profiling on livers from each group. Increased concentrations of (68)Zn tracer were detected in internal organs of mice receiving topical applications of (68)ZnO (nano-sized and larger particles), as well as in fetal livers from treated dams, compared with controls. Furthermore, concentrations of (68)Zn in organs of virgin mice treated with sunscreen containing (68)ZnO nanoparticles were found to be significantly higher than in mice treated with sunscreen containing larger (68)ZnO particles. However, no ZnO-mediated change in total Zn concentration in any of the major organs was observed. Thus, despite (68)Zn absorption, which may have been in the form of soluble (68)Zn species or (68)ZnO particles (not known), Zn homeostasis was largely maintained, and the presence of ZnO particles in sunscreen did not elicit an adverse biological response in the mice following short-term topical applications. |
format | Online Article Text |
id | pubmed-4179643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Informa UK Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-41796432014-10-02 Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles Osmond-McLeod, Megan J. Oytam, Yalchin Kirby, Jason K. Gomez-Fernandez, Laura Baxter, Brent McCall, Maxine J. Nanotoxicology Original Article Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn ((68)Zn) from (68)ZnO nano-sized and larger particles in sunscreens. Sunscreens were applied to the backs of virgin or pregnant hairless mice over four days. Control groups received topical applications of the sunscreen formulation containing no ZnO particles, or no treatment. Major organs were assessed for changes in (68)Zn/(64)Zn ratios, (68)Zn tracer and total Zn concentrations. Short-term biological impact was assessed by measuring levels of serum amyloid A in blood, and by performing whole-genome transcriptional profiling on livers from each group. Increased concentrations of (68)Zn tracer were detected in internal organs of mice receiving topical applications of (68)ZnO (nano-sized and larger particles), as well as in fetal livers from treated dams, compared with controls. Furthermore, concentrations of (68)Zn in organs of virgin mice treated with sunscreen containing (68)ZnO nanoparticles were found to be significantly higher than in mice treated with sunscreen containing larger (68)ZnO particles. However, no ZnO-mediated change in total Zn concentration in any of the major organs was observed. Thus, despite (68)Zn absorption, which may have been in the form of soluble (68)Zn species or (68)ZnO particles (not known), Zn homeostasis was largely maintained, and the presence of ZnO particles in sunscreen did not elicit an adverse biological response in the mice following short-term topical applications. Informa UK Ltd. 2014-08 2013-11-25 /pmc/articles/PMC4179643/ /pubmed/24266363 http://dx.doi.org/10.3109/17435390.2013.855832 Text en © 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the CC-BY-NC-ND 3.0 License which permits users to download and share the article for non-commercial purposes, so long as the article is reproduced in the whole without changes, and provided the original source is credited. |
spellingShingle | Original Article Osmond-McLeod, Megan J. Oytam, Yalchin Kirby, Jason K. Gomez-Fernandez, Laura Baxter, Brent McCall, Maxine J. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles |
title | Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles |
title_full | Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles |
title_fullStr | Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles |
title_full_unstemmed | Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles |
title_short | Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles |
title_sort | dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179643/ https://www.ncbi.nlm.nih.gov/pubmed/24266363 http://dx.doi.org/10.3109/17435390.2013.855832 |
work_keys_str_mv | AT osmondmcleodmeganj dermalabsorptionandshorttermbiologicalimpactinhairlessmicefromsunscreenscontainingzincoxidenanoorlargerparticles AT oytamyalchin dermalabsorptionandshorttermbiologicalimpactinhairlessmicefromsunscreenscontainingzincoxidenanoorlargerparticles AT kirbyjasonk dermalabsorptionandshorttermbiologicalimpactinhairlessmicefromsunscreenscontainingzincoxidenanoorlargerparticles AT gomezfernandezlaura dermalabsorptionandshorttermbiologicalimpactinhairlessmicefromsunscreenscontainingzincoxidenanoorlargerparticles AT baxterbrent dermalabsorptionandshorttermbiologicalimpactinhairlessmicefromsunscreenscontainingzincoxidenanoorlargerparticles AT mccallmaxinej dermalabsorptionandshorttermbiologicalimpactinhairlessmicefromsunscreenscontainingzincoxidenanoorlargerparticles |