Cargando…

On maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions

Maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions involves inverting the ratio [Formula: see text] of modified Bessel functions and computational methods are required to invert these functions using approximative or iterative algorithms. In this paper we...

Descripción completa

Detalles Bibliográficos
Autores principales: Hornik, Kurt, Grün, Bettina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180038/
https://www.ncbi.nlm.nih.gov/pubmed/25309045
http://dx.doi.org/10.1007/s00180-013-0471-0
Descripción
Sumario:Maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions involves inverting the ratio [Formula: see text] of modified Bessel functions and computational methods are required to invert these functions using approximative or iterative algorithms. In this paper we use Amos-type bounds for [Formula: see text] to deduce sharper bounds for the inverse function, determine the approximation error of these bounds, and use these to propose a new approximation for which the error tends to zero when the inverse of [Formula: see text] is evaluated at values tending to [Formula: see text] (from the left). We show that previously introduced rational bounds for [Formula: see text] which are invertible using quadratic equations cannot be used to improve these bounds.