Cargando…
On maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions
Maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions involves inverting the ratio [Formula: see text] of modified Bessel functions and computational methods are required to invert these functions using approximative or iterative algorithms. In this paper we...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180038/ https://www.ncbi.nlm.nih.gov/pubmed/25309045 http://dx.doi.org/10.1007/s00180-013-0471-0 |
Sumario: | Maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions involves inverting the ratio [Formula: see text] of modified Bessel functions and computational methods are required to invert these functions using approximative or iterative algorithms. In this paper we use Amos-type bounds for [Formula: see text] to deduce sharper bounds for the inverse function, determine the approximation error of these bounds, and use these to propose a new approximation for which the error tends to zero when the inverse of [Formula: see text] is evaluated at values tending to [Formula: see text] (from the left). We show that previously introduced rational bounds for [Formula: see text] which are invertible using quadratic equations cannot be used to improve these bounds. |
---|