Cargando…

Force Field Independent Metal Parameters Using a Nonbonded Dummy Model

[Image: see text] The cationic dummy atom approach provides a powerful nonbonded description for a range of alkaline-earth and transition-metal centers, capturing both structural and electrostatic effects. In this work we refine existing literature parameters for octahedrally coordinated Mn(2+), Zn(...

Descripción completa

Detalles Bibliográficos
Autores principales: Duarte, Fernanda, Bauer, Paul, Barrozo, Alexandre, Amrein, Beat Anton, Purg, Miha, Åqvist, Johan, Kamerlin, Shina Caroline Lynn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180081/
https://www.ncbi.nlm.nih.gov/pubmed/24670003
http://dx.doi.org/10.1021/jp501737x
_version_ 1782337176689704960
author Duarte, Fernanda
Bauer, Paul
Barrozo, Alexandre
Amrein, Beat Anton
Purg, Miha
Åqvist, Johan
Kamerlin, Shina Caroline Lynn
author_facet Duarte, Fernanda
Bauer, Paul
Barrozo, Alexandre
Amrein, Beat Anton
Purg, Miha
Åqvist, Johan
Kamerlin, Shina Caroline Lynn
author_sort Duarte, Fernanda
collection PubMed
description [Image: see text] The cationic dummy atom approach provides a powerful nonbonded description for a range of alkaline-earth and transition-metal centers, capturing both structural and electrostatic effects. In this work we refine existing literature parameters for octahedrally coordinated Mn(2+), Zn(2+), Mg(2+), and Ca(2+), as well as providing new parameters for Ni(2+), Co(2+), and Fe(2+). In all the cases, we are able to reproduce both M(2+)–O distances and experimental solvation free energies, which has not been achieved to date for transition metals using any other model. The parameters have also been tested using two different water models and show consistent performance. Therefore, our parameters are easily transferable to any force field that describes nonbonded interactions using Coulomb and Lennard-Jones potentials. Finally, we demonstrate the stability of our parameters in both the human and Escherichia coli variants of the enzyme glyoxalase I as showcase systems, as both enzymes are active with a range of transition metals. The parameters presented in this work provide a valuable resource for the molecular simulation community, as they extend the range of metal ions that can be studied using classical approaches, while also providing a starting point for subsequent parametrization of new metal centers.
format Online
Article
Text
id pubmed-4180081
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-41800812014-10-02 Force Field Independent Metal Parameters Using a Nonbonded Dummy Model Duarte, Fernanda Bauer, Paul Barrozo, Alexandre Amrein, Beat Anton Purg, Miha Åqvist, Johan Kamerlin, Shina Caroline Lynn J Phys Chem B [Image: see text] The cationic dummy atom approach provides a powerful nonbonded description for a range of alkaline-earth and transition-metal centers, capturing both structural and electrostatic effects. In this work we refine existing literature parameters for octahedrally coordinated Mn(2+), Zn(2+), Mg(2+), and Ca(2+), as well as providing new parameters for Ni(2+), Co(2+), and Fe(2+). In all the cases, we are able to reproduce both M(2+)–O distances and experimental solvation free energies, which has not been achieved to date for transition metals using any other model. The parameters have also been tested using two different water models and show consistent performance. Therefore, our parameters are easily transferable to any force field that describes nonbonded interactions using Coulomb and Lennard-Jones potentials. Finally, we demonstrate the stability of our parameters in both the human and Escherichia coli variants of the enzyme glyoxalase I as showcase systems, as both enzymes are active with a range of transition metals. The parameters presented in this work provide a valuable resource for the molecular simulation community, as they extend the range of metal ions that can be studied using classical approaches, while also providing a starting point for subsequent parametrization of new metal centers. American Chemical Society 2014-03-26 2014-04-24 /pmc/articles/PMC4180081/ /pubmed/24670003 http://dx.doi.org/10.1021/jp501737x Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Duarte, Fernanda
Bauer, Paul
Barrozo, Alexandre
Amrein, Beat Anton
Purg, Miha
Åqvist, Johan
Kamerlin, Shina Caroline Lynn
Force Field Independent Metal Parameters Using a Nonbonded Dummy Model
title Force Field Independent Metal Parameters Using a Nonbonded Dummy Model
title_full Force Field Independent Metal Parameters Using a Nonbonded Dummy Model
title_fullStr Force Field Independent Metal Parameters Using a Nonbonded Dummy Model
title_full_unstemmed Force Field Independent Metal Parameters Using a Nonbonded Dummy Model
title_short Force Field Independent Metal Parameters Using a Nonbonded Dummy Model
title_sort force field independent metal parameters using a nonbonded dummy model
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180081/
https://www.ncbi.nlm.nih.gov/pubmed/24670003
http://dx.doi.org/10.1021/jp501737x
work_keys_str_mv AT duartefernanda forcefieldindependentmetalparametersusinganonbondeddummymodel
AT bauerpaul forcefieldindependentmetalparametersusinganonbondeddummymodel
AT barrozoalexandre forcefieldindependentmetalparametersusinganonbondeddummymodel
AT amreinbeatanton forcefieldindependentmetalparametersusinganonbondeddummymodel
AT purgmiha forcefieldindependentmetalparametersusinganonbondeddummymodel
AT aqvistjohan forcefieldindependentmetalparametersusinganonbondeddummymodel
AT kamerlinshinacarolinelynn forcefieldindependentmetalparametersusinganonbondeddummymodel