Cargando…
Correlation between fibronectin binding protein A expression level at the surface of recombinant lactococcus lactis and plasmid transfer in vitro and in vivo
BACKGROUND: Fibronectin Binding Protein A (FnBPA) is an invasin from Staphylococcus aureus that allows this pathogen to internalize into eukaryote cells. It was previously demonstrated that recombinant Lactococcus lactis expressing FnBPA were invasive and able to transfer a plasmid to eukaryotic cel...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180319/ https://www.ncbi.nlm.nih.gov/pubmed/25249337 http://dx.doi.org/10.1186/s12866-014-0248-9 |
Sumario: | BACKGROUND: Fibronectin Binding Protein A (FnBPA) is an invasin from Staphylococcus aureus that allows this pathogen to internalize into eukaryote cells. It was previously demonstrated that recombinant Lactococcus lactis expressing FnBPA were invasive and able to transfer a plasmid to eukaryotic cells in vitro and in vivo. In this study, the invasivity of recombinant strains of Lactococcus lactis that express FnBPA under the control of its constitutive promoter or driven by the strong nisin inducible expression system (NICE) were studied. RESULTS: It was demonstrated that the nisA promoter allows an increase of FnBPA expression on the surface of Lactococcus lactis surface, as shown by flow cytometry, which subsequently enhanced internalization and plasmid transfer properties in vitro in Caco2 cells and Bone Marrow Dendritic Cells. In vivo, the use of nisA promoter increase the plasmid transfer in cells of both the small and large intestine of mice. CONCLUSION: FnBPA expression at the surface of recombinant L. lactis is positively correlated to internalization and DNA transfer properties. The recombinant strains of L. lactis that expresses FnBPA under the control of the nisin inducible expression system could thus be considered as an improved tool in the field of DNA transfer. |
---|