Cargando…

Enhanced oxygen transfer rate and bioprocess yield by using magnetite nanoparticles in fermentation media of erythromycin

BACKGROUND: Magnetite nanoparticles have widespread biomedical applications. In the aerobic bioprocesses, oxygen is a limiting factor for the microbial metabolic rate; hence a high availability of oxygen in the medium is crucial for high fermentation productivity. This study aimed to examine the eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Labbeiki, Ghazal, Attar, Hossein, Heydarinasab, Amir, Sorkhabadi, Sayed, Rashidi, Alimorad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180953/
https://www.ncbi.nlm.nih.gov/pubmed/25223458
http://dx.doi.org/10.1186/s40199-014-0066-5
Descripción
Sumario:BACKGROUND: Magnetite nanoparticles have widespread biomedical applications. In the aerobic bioprocesses, oxygen is a limiting factor for the microbial metabolic rate; hence a high availability of oxygen in the medium is crucial for high fermentation productivity. This study aimed to examine the effect of using magnetite nanoparticles on oxygen transfer rate in erythromycin fermentation culture. METHODS: Magnetite nanoparticles were synthetized through co-precipitation method. After observing the enhanced oxygen transfer rate in deionized water enriched with magnetite nanoparticles, these nanoparticles were used in the media of by Saccharopolyspora erythraea growth to explore their impact on erythromycin fermentation titer. Treatments comprised different concentrations of magnetite nanoparticles, (0, 0.005, 0.02 v/v). RESULTS: In the medium containing 0.02 v/v magnetite nanoparticles, KLa was determined to be 1.89 time higher than that in magnetite nanoparticle-free broth. An improved 2.25 time higher erythromycin titer was obtained in presence of 0.02 v/v nanoparticles. CONCLUSIONS: Our results, demonstrate the potential of magnetite nanoparticles for enhancing the productivity of aerobic pharmaceutical bioprocesses.