Cargando…

Regulated spatial organization and sensitivity of cytosolic protein oxidation in Caenorhabditis elegans

Cells adjust their behavior in response to redox events by regulating protein activity through the reversible formation of disulfide bridges between cysteine thiols. However, the spatial and temporal control of these modifications remains poorly understood in multicellular organisms. Here, we measur...

Descripción completa

Detalles Bibliográficos
Autores principales: Romero-Aristizabal, Catalina, Marks, Debora S., Fontana, Walter, Apfeld, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181376/
https://www.ncbi.nlm.nih.gov/pubmed/25262602
http://dx.doi.org/10.1038/ncomms6020
Descripción
Sumario:Cells adjust their behavior in response to redox events by regulating protein activity through the reversible formation of disulfide bridges between cysteine thiols. However, the spatial and temporal control of these modifications remains poorly understood in multicellular organisms. Here, we measured the protein thiol-disulfide balance in live C. elegans using a genetically-encoded redox sensor and found that it is specific to tissues and patterned spatially within a tissue. Insulin signaling regulates the sensor's oxidation at both of these levels. Unexpectedly, we found that isogenic individuals exhibit large differences in the sensor's thiol-disulfide balance. This variation contrasts with the general view that glutathione acts as the main cellular redox buffer. Indeed, our work suggests that glutathione converts small changes in its oxidation level into large changes in its redox potential. We therefore propose that glutathione facilitates the sensitive control of the thioldisulfide balance of target proteins in response to cellular redox events.