Cargando…

In Vivo Transcription Kinetics of a Synthetic Gene Uninvolved in Stress-Response Pathways in Stressed Escherichia coli Cells

The fast adaptation of Escherichia coli to stressful environments includes the regulation of gene expression rates, mainly of transcription, by specific and global stress-response mechanisms. To study the effects of mechanisms acting on a global level, we observed with single molecule sensitivity th...

Descripción completa

Detalles Bibliográficos
Autores principales: Muthukrishnan, Anantha-Barathi, Martikainen, Antti, Neeli-Venkata, Ramakanth, Ribeiro, Andre S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182640/
https://www.ncbi.nlm.nih.gov/pubmed/25268540
http://dx.doi.org/10.1371/journal.pone.0109005
_version_ 1782337574040240128
author Muthukrishnan, Anantha-Barathi
Martikainen, Antti
Neeli-Venkata, Ramakanth
Ribeiro, Andre S.
author_facet Muthukrishnan, Anantha-Barathi
Martikainen, Antti
Neeli-Venkata, Ramakanth
Ribeiro, Andre S.
author_sort Muthukrishnan, Anantha-Barathi
collection PubMed
description The fast adaptation of Escherichia coli to stressful environments includes the regulation of gene expression rates, mainly of transcription, by specific and global stress-response mechanisms. To study the effects of mechanisms acting on a global level, we observed with single molecule sensitivity the effects of mild acidic shift and oxidative stress on the in vivo transcription dynamics of a probe gene encoding an RNA target for MS2d-GFP, under the control of a synthetic promoter. After showing that this promoter is uninvolved in fast stress-response pathways, we compared its kinetics of transcript production under stress and in optimal conditions. We find that, following the application of either stress, the mean rates of transcription activation and of subsequent RNA production of the probe gene are reduced, particularly under oxidative stress. Meanwhile, the noise in RNA production decreases under oxidative stress, but not under acidic shift. From distributions of intervals between consecutive RNA productions, we infer that the number and duration of the rate-limiting steps in transcription initiation change, following the application of stress. These changes differ in the two stress conditions and are consistent with the changes in noise in RNA production. Overall, our measurements of the transcription initiation kinetics of the probe gene indicate that, following sub-lethal stresses, there are stress-specific changes in the dynamics of transcription initiation of the probe gene that affect its mean rate and noise of transcript production. Given the non-involvement of the probe gene in stress-response pathways, we suggest that these changes are caused by global response mechanisms of E. coli to stress.
format Online
Article
Text
id pubmed-4182640
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41826402014-10-07 In Vivo Transcription Kinetics of a Synthetic Gene Uninvolved in Stress-Response Pathways in Stressed Escherichia coli Cells Muthukrishnan, Anantha-Barathi Martikainen, Antti Neeli-Venkata, Ramakanth Ribeiro, Andre S. PLoS One Research Article The fast adaptation of Escherichia coli to stressful environments includes the regulation of gene expression rates, mainly of transcription, by specific and global stress-response mechanisms. To study the effects of mechanisms acting on a global level, we observed with single molecule sensitivity the effects of mild acidic shift and oxidative stress on the in vivo transcription dynamics of a probe gene encoding an RNA target for MS2d-GFP, under the control of a synthetic promoter. After showing that this promoter is uninvolved in fast stress-response pathways, we compared its kinetics of transcript production under stress and in optimal conditions. We find that, following the application of either stress, the mean rates of transcription activation and of subsequent RNA production of the probe gene are reduced, particularly under oxidative stress. Meanwhile, the noise in RNA production decreases under oxidative stress, but not under acidic shift. From distributions of intervals between consecutive RNA productions, we infer that the number and duration of the rate-limiting steps in transcription initiation change, following the application of stress. These changes differ in the two stress conditions and are consistent with the changes in noise in RNA production. Overall, our measurements of the transcription initiation kinetics of the probe gene indicate that, following sub-lethal stresses, there are stress-specific changes in the dynamics of transcription initiation of the probe gene that affect its mean rate and noise of transcript production. Given the non-involvement of the probe gene in stress-response pathways, we suggest that these changes are caused by global response mechanisms of E. coli to stress. Public Library of Science 2014-09-30 /pmc/articles/PMC4182640/ /pubmed/25268540 http://dx.doi.org/10.1371/journal.pone.0109005 Text en © 2014 Muthukrishnan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Muthukrishnan, Anantha-Barathi
Martikainen, Antti
Neeli-Venkata, Ramakanth
Ribeiro, Andre S.
In Vivo Transcription Kinetics of a Synthetic Gene Uninvolved in Stress-Response Pathways in Stressed Escherichia coli Cells
title In Vivo Transcription Kinetics of a Synthetic Gene Uninvolved in Stress-Response Pathways in Stressed Escherichia coli Cells
title_full In Vivo Transcription Kinetics of a Synthetic Gene Uninvolved in Stress-Response Pathways in Stressed Escherichia coli Cells
title_fullStr In Vivo Transcription Kinetics of a Synthetic Gene Uninvolved in Stress-Response Pathways in Stressed Escherichia coli Cells
title_full_unstemmed In Vivo Transcription Kinetics of a Synthetic Gene Uninvolved in Stress-Response Pathways in Stressed Escherichia coli Cells
title_short In Vivo Transcription Kinetics of a Synthetic Gene Uninvolved in Stress-Response Pathways in Stressed Escherichia coli Cells
title_sort in vivo transcription kinetics of a synthetic gene uninvolved in stress-response pathways in stressed escherichia coli cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182640/
https://www.ncbi.nlm.nih.gov/pubmed/25268540
http://dx.doi.org/10.1371/journal.pone.0109005
work_keys_str_mv AT muthukrishnanananthabarathi invivotranscriptionkineticsofasyntheticgeneuninvolvedinstressresponsepathwaysinstressedescherichiacolicells
AT martikainenantti invivotranscriptionkineticsofasyntheticgeneuninvolvedinstressresponsepathwaysinstressedescherichiacolicells
AT neelivenkataramakanth invivotranscriptionkineticsofasyntheticgeneuninvolvedinstressresponsepathwaysinstressedescherichiacolicells
AT ribeiroandres invivotranscriptionkineticsofasyntheticgeneuninvolvedinstressresponsepathwaysinstressedescherichiacolicells