Cargando…
Structured chaos shapes spike-response noise entropy in balanced neural networks
Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how...
Autores principales: | Lajoie, Guillaume, Thivierge, Jean-Philippe, Shea-Brown, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183092/ https://www.ncbi.nlm.nih.gov/pubmed/25324772 http://dx.doi.org/10.3389/fncom.2014.00123 |
Ejemplares similares
-
Structured chaos shapes joint spike-response noise entropy in temporally driven balanced networks
por: Lajoie, Guillaume, et al.
Publicado: (2014) -
Encoding in Balanced Networks: Revisiting Spike Patterns and Chaos in Stimulus-Driven Systems
por: Lajoie, Guillaume, et al.
Publicado: (2016) -
Commentary on Structured chaos shapes spike-response noise entropy in balanced neural networks, by Lajoie, Thivierge, and Shea-Brown
por: Thomas, Peter J.
Publicado: (2015) -
Learning Long Temporal Sequences in Spiking Networks by Multiplexing Neural Oscillations
por: Vincent-Lamarre, Philippe, et al.
Publicado: (2020) -
Decision-making in a population of spiking neurons shaped by dynamics of intrinsic noise
por: Richardson, Lydia, et al.
Publicado: (2014)