Cargando…
Category variability effect in category learning with auditory stimuli
The category variability effect refers to that people tend to classify the midpoint item between two categories as the category more variable. This effect is regarded as evidence against the exemplar model, such as GCM (Generalized Context Model) and favoring the rule model, such as GRT (i.e., the d...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183094/ https://www.ncbi.nlm.nih.gov/pubmed/25324818 http://dx.doi.org/10.3389/fpsyg.2014.01122 |
_version_ | 1782337661170614272 |
---|---|
author | Yang, Lee-Xieng Wu, Yueh-Hsun |
author_facet | Yang, Lee-Xieng Wu, Yueh-Hsun |
author_sort | Yang, Lee-Xieng |
collection | PubMed |
description | The category variability effect refers to that people tend to classify the midpoint item between two categories as the category more variable. This effect is regarded as evidence against the exemplar model, such as GCM (Generalized Context Model) and favoring the rule model, such as GRT (i.e., the decision bound model). Although this effect has been found in conceptual category learning, it is not often observed in perceptual category learning. To figure out why the category variability effect is seldom reported in the past studies, we propose two hypotheses. First, due to sequence effect, the midpoint item would be classified as different categories, when following different items. When we combine these inconsistent responses for the midpoint item, no category variability effect occurs. Second, instead of the combination of sequence effect in different categorization conditions, the combination of different categorization strategies conceals the category variability effect. One experiment is conducted with single tones of different frequencies as stimuli. The collected data reveal sequence effect. However, the modeling results with the MAC model and the decision bound model support that the existence of individual differences is the reason for why no category variability effect occurs. Three groups are identified by their categorization strategy. Group 1 is rule user, placing the category boundary close to the low-variability category, hence inducing category variability effect. Group 2 takes the MAC strategy and classifies the midpoint item as different categories, depending on its preceding item. Group 3 classifies the midpoint item as the low-variability category, which is consistent with the prediction of the decision bound model as well as GCM. Nonetheless, our conclusion is that category variability effect can be found in perceptual category learning, but might be concealed by the averaged data. |
format | Online Article Text |
id | pubmed-4183094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-41830942014-10-16 Category variability effect in category learning with auditory stimuli Yang, Lee-Xieng Wu, Yueh-Hsun Front Psychol Psychology The category variability effect refers to that people tend to classify the midpoint item between two categories as the category more variable. This effect is regarded as evidence against the exemplar model, such as GCM (Generalized Context Model) and favoring the rule model, such as GRT (i.e., the decision bound model). Although this effect has been found in conceptual category learning, it is not often observed in perceptual category learning. To figure out why the category variability effect is seldom reported in the past studies, we propose two hypotheses. First, due to sequence effect, the midpoint item would be classified as different categories, when following different items. When we combine these inconsistent responses for the midpoint item, no category variability effect occurs. Second, instead of the combination of sequence effect in different categorization conditions, the combination of different categorization strategies conceals the category variability effect. One experiment is conducted with single tones of different frequencies as stimuli. The collected data reveal sequence effect. However, the modeling results with the MAC model and the decision bound model support that the existence of individual differences is the reason for why no category variability effect occurs. Three groups are identified by their categorization strategy. Group 1 is rule user, placing the category boundary close to the low-variability category, hence inducing category variability effect. Group 2 takes the MAC strategy and classifies the midpoint item as different categories, depending on its preceding item. Group 3 classifies the midpoint item as the low-variability category, which is consistent with the prediction of the decision bound model as well as GCM. Nonetheless, our conclusion is that category variability effect can be found in perceptual category learning, but might be concealed by the averaged data. Frontiers Media S.A. 2014-10-02 /pmc/articles/PMC4183094/ /pubmed/25324818 http://dx.doi.org/10.3389/fpsyg.2014.01122 Text en Copyright © 2014 Yang and Wu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Yang, Lee-Xieng Wu, Yueh-Hsun Category variability effect in category learning with auditory stimuli |
title | Category variability effect in category learning with auditory stimuli |
title_full | Category variability effect in category learning with auditory stimuli |
title_fullStr | Category variability effect in category learning with auditory stimuli |
title_full_unstemmed | Category variability effect in category learning with auditory stimuli |
title_short | Category variability effect in category learning with auditory stimuli |
title_sort | category variability effect in category learning with auditory stimuli |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183094/ https://www.ncbi.nlm.nih.gov/pubmed/25324818 http://dx.doi.org/10.3389/fpsyg.2014.01122 |
work_keys_str_mv | AT yangleexieng categoryvariabilityeffectincategorylearningwithauditorystimuli AT wuyuehhsun categoryvariabilityeffectincategorylearningwithauditorystimuli |