Cargando…

Evidence of a Bacterial Receptor for Lysozyme: Binding of Lysozyme to the Anti-σ Factor RsiV Controls Activation of the ECF σ Factor σ(V)

σ factors endow RNA polymerase with promoter specificity in bacteria. Extra-Cytoplasmic Function (ECF) σ factors represent the largest and most diverse family of σ factors. Most ECF σ factors must be activated in response to an external signal. One mechanism of activation is the stepwise proteolytic...

Descripción completa

Detalles Bibliográficos
Autores principales: Hastie, Jessica L., Williams, Kyle B., Sepúlveda, Carolina, Houtman, Jon C., Forest, Katrina T., Ellermeier, Craig D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183432/
https://www.ncbi.nlm.nih.gov/pubmed/25275625
http://dx.doi.org/10.1371/journal.pgen.1004643
Descripción
Sumario:σ factors endow RNA polymerase with promoter specificity in bacteria. Extra-Cytoplasmic Function (ECF) σ factors represent the largest and most diverse family of σ factors. Most ECF σ factors must be activated in response to an external signal. One mechanism of activation is the stepwise proteolytic destruction of an anti-σ factor via Regulated Intramembrane Proteolysis (RIP). In most cases, the site-1 protease required to initiate the RIP process directly senses the signal. Here we report a new mechanism in which the anti-σ factor rather than the site-1 protease is the sensor. We provide evidence suggesting that the anti-σ factor RsiV is the bacterial receptor for the innate immune defense enzyme, lysozyme. The site-1 cleavage site is similar to the recognition site of signal peptidase and cleavage at this site is required for σ(V) activation in Bacillus subtilis. We reconstitute site-1 cleavage in vitro and demonstrate that it requires both signal peptidase and lysozyme. We demonstrate that the anti-σ factor RsiV directly binds to lysozyme and muramidase activity is not required for σ(V) activation. We propose a model in which the binding of lysozyme to RsiV activates RsiV for signal peptidase cleavage at site-1, initiating proteolytic destruction of RsiV and activation of σ(V). This suggests a novel mechanism in which conformational change in a substrate controls the cleavage susceptibility for signal peptidase. Thus, unlike other ECF σ factors which require regulated intramembrane proteolysis for activation, the sensor for σ(V) activation is not the site-1 protease but the anti-σ factor.