Cargando…

Acetate Availability and Utilization Supports the Growth of Mutant Sub-Populations on Aging Bacterial Colonies

When bacterial colonies age most cells enter a stationary phase, but sub-populations of mutant bacteria can continue to grow and accumulate. These sub-populations include bacteria with mutations in rpoB (RNA polymerase β-subunit) or rpoS (RNA polymerase stress-response sigma factor). Here we have id...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergman, Jessica M., Wrande, Marie, Hughes, Diarmaid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183559/
https://www.ncbi.nlm.nih.gov/pubmed/25275605
http://dx.doi.org/10.1371/journal.pone.0109255
_version_ 1782337713063591936
author Bergman, Jessica M.
Wrande, Marie
Hughes, Diarmaid
author_facet Bergman, Jessica M.
Wrande, Marie
Hughes, Diarmaid
author_sort Bergman, Jessica M.
collection PubMed
description When bacterial colonies age most cells enter a stationary phase, but sub-populations of mutant bacteria can continue to grow and accumulate. These sub-populations include bacteria with mutations in rpoB (RNA polymerase β-subunit) or rpoS (RNA polymerase stress-response sigma factor). Here we have identified acetate as a nutrient present in the aging colonies that is utilized by these mutant subpopulations to support their continued growth. Proteome analysis of aging colonies showed that several proteins involved in acetate conversion and utilization were upregulated during aging. Acetate is known to be excreted during the exponential growth phase but can be imported later during the transition to stationary phase and converted to acetyl-CoA. Acetyl-CoA is used in multiple processes, including feeding into the TCA cycle, generating ATP via the glyoxylate shunt, as a source of acetyl groups for protein modification, and to support fatty acid biosynthesis. We showed that deletion of acs (encodes acetyl-CoA synthetase; converts acetate into acetyl-CoA) significantly reduced the accumulation of rpoB and rpoS mutant subpopulations on aging colonies. Measurement of radioactive acetate uptake showed that the rate of conversion decreased in aging wild-type colonies, was maintained at a constant level in the rpoB mutant, and significantly increased in the aging rpoS mutant. Finally, we showed that the growth of subpopulations on aging colonies was greatly enhanced if the aging colony itself was unable to utilize acetate, leaving more acetate available for mutant subpopulations to use. Accordingly, the data show that the accumulation of subpopulations of rpoB and rpoS mutants on aging colonies is supported by the availability in the aging colony of acetate, and by the ability of the subpopulation cells to convert the acetate to acetyl-CoA.
format Online
Article
Text
id pubmed-4183559
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41835592014-10-07 Acetate Availability and Utilization Supports the Growth of Mutant Sub-Populations on Aging Bacterial Colonies Bergman, Jessica M. Wrande, Marie Hughes, Diarmaid PLoS One Research Article When bacterial colonies age most cells enter a stationary phase, but sub-populations of mutant bacteria can continue to grow and accumulate. These sub-populations include bacteria with mutations in rpoB (RNA polymerase β-subunit) or rpoS (RNA polymerase stress-response sigma factor). Here we have identified acetate as a nutrient present in the aging colonies that is utilized by these mutant subpopulations to support their continued growth. Proteome analysis of aging colonies showed that several proteins involved in acetate conversion and utilization were upregulated during aging. Acetate is known to be excreted during the exponential growth phase but can be imported later during the transition to stationary phase and converted to acetyl-CoA. Acetyl-CoA is used in multiple processes, including feeding into the TCA cycle, generating ATP via the glyoxylate shunt, as a source of acetyl groups for protein modification, and to support fatty acid biosynthesis. We showed that deletion of acs (encodes acetyl-CoA synthetase; converts acetate into acetyl-CoA) significantly reduced the accumulation of rpoB and rpoS mutant subpopulations on aging colonies. Measurement of radioactive acetate uptake showed that the rate of conversion decreased in aging wild-type colonies, was maintained at a constant level in the rpoB mutant, and significantly increased in the aging rpoS mutant. Finally, we showed that the growth of subpopulations on aging colonies was greatly enhanced if the aging colony itself was unable to utilize acetate, leaving more acetate available for mutant subpopulations to use. Accordingly, the data show that the accumulation of subpopulations of rpoB and rpoS mutants on aging colonies is supported by the availability in the aging colony of acetate, and by the ability of the subpopulation cells to convert the acetate to acetyl-CoA. Public Library of Science 2014-10-02 /pmc/articles/PMC4183559/ /pubmed/25275605 http://dx.doi.org/10.1371/journal.pone.0109255 Text en © 2014 Bergman et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Bergman, Jessica M.
Wrande, Marie
Hughes, Diarmaid
Acetate Availability and Utilization Supports the Growth of Mutant Sub-Populations on Aging Bacterial Colonies
title Acetate Availability and Utilization Supports the Growth of Mutant Sub-Populations on Aging Bacterial Colonies
title_full Acetate Availability and Utilization Supports the Growth of Mutant Sub-Populations on Aging Bacterial Colonies
title_fullStr Acetate Availability and Utilization Supports the Growth of Mutant Sub-Populations on Aging Bacterial Colonies
title_full_unstemmed Acetate Availability and Utilization Supports the Growth of Mutant Sub-Populations on Aging Bacterial Colonies
title_short Acetate Availability and Utilization Supports the Growth of Mutant Sub-Populations on Aging Bacterial Colonies
title_sort acetate availability and utilization supports the growth of mutant sub-populations on aging bacterial colonies
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183559/
https://www.ncbi.nlm.nih.gov/pubmed/25275605
http://dx.doi.org/10.1371/journal.pone.0109255
work_keys_str_mv AT bergmanjessicam acetateavailabilityandutilizationsupportsthegrowthofmutantsubpopulationsonagingbacterialcolonies
AT wrandemarie acetateavailabilityandutilizationsupportsthegrowthofmutantsubpopulationsonagingbacterialcolonies
AT hughesdiarmaid acetateavailabilityandutilizationsupportsthegrowthofmutantsubpopulationsonagingbacterialcolonies