Cargando…
VE-Cadherin-Independent Cancer Cell Incorporation into the Vascular Endothelium Precedes Transmigration
Metastasis is accountable for 90% of cancer deaths. During metastasis, tumor cells break away from the primary tumor, enter the blood and the lymph vessels, and use them as highways to travel to distant sites in the body to form secondary tumors. Cancer cell migration through the endothelium and int...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183660/ https://www.ncbi.nlm.nih.gov/pubmed/25275457 http://dx.doi.org/10.1371/journal.pone.0109748 |
_version_ | 1782337736527577088 |
---|---|
author | Hamilla, Susan M. Stroka, Kimberly M. Aranda-Espinoza, Helim |
author_facet | Hamilla, Susan M. Stroka, Kimberly M. Aranda-Espinoza, Helim |
author_sort | Hamilla, Susan M. |
collection | PubMed |
description | Metastasis is accountable for 90% of cancer deaths. During metastasis, tumor cells break away from the primary tumor, enter the blood and the lymph vessels, and use them as highways to travel to distant sites in the body to form secondary tumors. Cancer cell migration through the endothelium and into the basement membrane represents a critical step in the metastatic cascade, yet it is not well understood. This process is well characterized for immune cells that routinely transmigrate through the endothelium to sites of infection, inflammation, or injury. Previous studies with leukocytes have demonstrated that this step depends heavily on the activation status of the endothelium and subendothelial substrate stiffness. Here, we used a previously established in vitro model of the endothelium and live cell imaging, in order to observe cancer cell transmigration and compare this process to leukocytes. Interestingly, cancer cell transmigration includes an additional step, which we term ‘incorporation’, into the endothelial cell (EC) monolayer. During this phase, cancer cells physically displace ECs, leading to the dislocation of EC VE-cadherin away from EC junctions bordering cancer cells, and spread into the monolayer. In some cases, ECs completely detach from the matrix. Furthermore, cancer cell incorporation occurs independently of the activation status and the subendothelial substrate stiffness for breast cancer and melanoma cells, a notable difference from the process by which leukocytes transmigrate. Meanwhile, pancreatic cancer cell incorporation was dependent on the activation status of the endothelium and changed on very stiff subendothelial substrates. Collectively, our results provide mechanistic insights into tumor cell extravasation and demonstrate that incorporation is one of the earliest steps. |
format | Online Article Text |
id | pubmed-4183660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41836602014-10-07 VE-Cadherin-Independent Cancer Cell Incorporation into the Vascular Endothelium Precedes Transmigration Hamilla, Susan M. Stroka, Kimberly M. Aranda-Espinoza, Helim PLoS One Research Article Metastasis is accountable for 90% of cancer deaths. During metastasis, tumor cells break away from the primary tumor, enter the blood and the lymph vessels, and use them as highways to travel to distant sites in the body to form secondary tumors. Cancer cell migration through the endothelium and into the basement membrane represents a critical step in the metastatic cascade, yet it is not well understood. This process is well characterized for immune cells that routinely transmigrate through the endothelium to sites of infection, inflammation, or injury. Previous studies with leukocytes have demonstrated that this step depends heavily on the activation status of the endothelium and subendothelial substrate stiffness. Here, we used a previously established in vitro model of the endothelium and live cell imaging, in order to observe cancer cell transmigration and compare this process to leukocytes. Interestingly, cancer cell transmigration includes an additional step, which we term ‘incorporation’, into the endothelial cell (EC) monolayer. During this phase, cancer cells physically displace ECs, leading to the dislocation of EC VE-cadherin away from EC junctions bordering cancer cells, and spread into the monolayer. In some cases, ECs completely detach from the matrix. Furthermore, cancer cell incorporation occurs independently of the activation status and the subendothelial substrate stiffness for breast cancer and melanoma cells, a notable difference from the process by which leukocytes transmigrate. Meanwhile, pancreatic cancer cell incorporation was dependent on the activation status of the endothelium and changed on very stiff subendothelial substrates. Collectively, our results provide mechanistic insights into tumor cell extravasation and demonstrate that incorporation is one of the earliest steps. Public Library of Science 2014-10-02 /pmc/articles/PMC4183660/ /pubmed/25275457 http://dx.doi.org/10.1371/journal.pone.0109748 Text en © 2014 Hamilla et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hamilla, Susan M. Stroka, Kimberly M. Aranda-Espinoza, Helim VE-Cadherin-Independent Cancer Cell Incorporation into the Vascular Endothelium Precedes Transmigration |
title | VE-Cadherin-Independent Cancer Cell Incorporation into the Vascular Endothelium Precedes Transmigration |
title_full | VE-Cadherin-Independent Cancer Cell Incorporation into the Vascular Endothelium Precedes Transmigration |
title_fullStr | VE-Cadherin-Independent Cancer Cell Incorporation into the Vascular Endothelium Precedes Transmigration |
title_full_unstemmed | VE-Cadherin-Independent Cancer Cell Incorporation into the Vascular Endothelium Precedes Transmigration |
title_short | VE-Cadherin-Independent Cancer Cell Incorporation into the Vascular Endothelium Precedes Transmigration |
title_sort | ve-cadherin-independent cancer cell incorporation into the vascular endothelium precedes transmigration |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183660/ https://www.ncbi.nlm.nih.gov/pubmed/25275457 http://dx.doi.org/10.1371/journal.pone.0109748 |
work_keys_str_mv | AT hamillasusanm vecadherinindependentcancercellincorporationintothevascularendotheliumprecedestransmigration AT strokakimberlym vecadherinindependentcancercellincorporationintothevascularendotheliumprecedestransmigration AT arandaespinozahelim vecadherinindependentcancercellincorporationintothevascularendotheliumprecedestransmigration |