Cargando…

Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery

Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results...

Descripción completa

Detalles Bibliográficos
Autores principales: Belgiu, Mariana, Drǎguţ, Lucian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183749/
https://www.ncbi.nlm.nih.gov/pubmed/25284960
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.002
_version_ 1782337742424768512
author Belgiu, Mariana
Drǎguţ, Lucian
author_facet Belgiu, Mariana
Drǎguţ, Lucian
author_sort Belgiu, Mariana
collection PubMed
description Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing ‘optimal segmentation’. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.
format Online
Article
Text
id pubmed-4183749
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-41837492014-10-03 Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery Belgiu, Mariana Drǎguţ, Lucian ISPRS J Photogramm Remote Sens Article Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing ‘optimal segmentation’. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved. Elsevier 2014-10 /pmc/articles/PMC4183749/ /pubmed/25284960 http://dx.doi.org/10.1016/j.isprsjprs.2014.07.002 Text en © 2014 International Society for Photogrammetry and Remote Sensing, Inc (ISPRS). Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Belgiu, Mariana
Drǎguţ, Lucian
Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
title Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
title_full Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
title_fullStr Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
title_full_unstemmed Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
title_short Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
title_sort comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183749/
https://www.ncbi.nlm.nih.gov/pubmed/25284960
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.002
work_keys_str_mv AT belgiumariana comparingsupervisedandunsupervisedmultiresolutionsegmentationapproachesforextractingbuildingsfromveryhighresolutionimagery
AT dragutlucian comparingsupervisedandunsupervisedmultiresolutionsegmentationapproachesforextractingbuildingsfromveryhighresolutionimagery