Cargando…

Preclinical and Clinical Investigations of Mood Stabilizers for Huntington's Disease: What Have We Learned?

Huntington's disease (HD) is a lethal, autosomal dominant neurodegenerative disorder caused by CAG repeat expansions at exon 1 of the huntingtin (Htt) gene, which encodes for a mutant huntingtin protein (mHtt). Prominent symptoms of HD include motor dysfunction, characterized by chorea; psychia...

Descripción completa

Detalles Bibliográficos
Autores principales: Scheuing, Lisa, Chiu, Chi-Tso, Liao, Hsiao-Mei, Linares, Gabriel R., Chuang, De-Maw
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183923/
https://www.ncbi.nlm.nih.gov/pubmed/25285035
http://dx.doi.org/10.7150/ijbs.9898
Descripción
Sumario:Huntington's disease (HD) is a lethal, autosomal dominant neurodegenerative disorder caused by CAG repeat expansions at exon 1 of the huntingtin (Htt) gene, which encodes for a mutant huntingtin protein (mHtt). Prominent symptoms of HD include motor dysfunction, characterized by chorea; psychiatric disturbances such as mood and personality changes; and cognitive decline that may lead to dementia. Pathologically multiple complex processes and pathways are involved in the development of HD, including selective loss of neurons in the striatum and cortex, dysregulation of cellular autophagy, mitochondrial dysfunction, decreased neurotrophic and growth factor levels, and aberrant regulation of gene expression and epigenetic patterns. No cure for HD presently exists, nor are there drugs that can halt the progression of this devastating disease. Therefore, the need to discover neuroprotective modalities to combat HD is critical. In basic and preclinical studies using cellular and animal HD models, the mood stabilizers lithium and valproic acid (VPA) have shown multiple beneficial effects, including behavioral and motor improvement, enhanced neuroprotection, and lifespan extension. Recent studies in transgenic HD mice support the notion that combined lithium/VPA treatment is more effective than treatment with either drug alone. In humans, several clinical studies of HD patients found that lithium treatment improved mood, and that VPA treatment both stabilized mood and moderately reduced chorea. In contrast, other studies observed that the hallmark features of HD were unaffected by treatment with either lithium or VPA. The current review discusses preclinical and clinical investigations of the beneficial effects of lithium and VPA on HD pathophysiology.