Cargando…
YASARA View—molecular graphics for all devices—from smartphones to workstations
Summary: Today's graphics processing units (GPUs) compose the scene from individual triangles. As about 320 triangles are needed to approximate a single sphere—an atom—in a convincing way, visualizing larger proteins with atomic details requires tens of millions of triangles, far too many for s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184264/ https://www.ncbi.nlm.nih.gov/pubmed/24996895 http://dx.doi.org/10.1093/bioinformatics/btu426 |
Sumario: | Summary: Today's graphics processing units (GPUs) compose the scene from individual triangles. As about 320 triangles are needed to approximate a single sphere—an atom—in a convincing way, visualizing larger proteins with atomic details requires tens of millions of triangles, far too many for smooth interactive frame rates. We describe a new approach to solve this ‘molecular graphics problem’, which shares the work between GPU and multiple CPU cores, generates high-quality results with perfectly round spheres, shadows and ambient lighting and requires only OpenGL 1.0 functionality, without any pixel shader Z-buffer access (a feature which is missing in most mobile devices). Availability and implementation: YASARA View, a molecular modeling program built around the visualization algorithm described here, is freely available (including commercial use) for Linux, MacOS, Windows and Android (Intel) from www.YASARA.org. Contact: elmar@yasara.org Supplementary information: Supplementary data are available at Bioinformatics online. |
---|