Cargando…
Functional Dynamic Contrast-Enhanced Magnetic Resonance Imaging in an Animal Model of Brain Metastases: A Pilot Study
BACKGROUND: Brain metastasis is a common disease with a poor prognosis. The purpose of this study is to test feasibility and safety of the animal models for brain metastases and to use dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to enhance detection of brain metastases. METHODS: W...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184857/ https://www.ncbi.nlm.nih.gov/pubmed/25280000 http://dx.doi.org/10.1371/journal.pone.0109308 |
Sumario: | BACKGROUND: Brain metastasis is a common disease with a poor prognosis. The purpose of this study is to test feasibility and safety of the animal models for brain metastases and to use dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to enhance detection of brain metastases. METHODS: With approval from the institutional animal ethics committee, 18 New Zealand rabbits were randomly divided into three groups: Group A received an intra-carotid infusion (ICI) of mannitol followed by VX2 cells; group B received successive ICI of mannitol and heparin followed by VX2 cells; and group C received an ICI of normal saline. The survival rate and clinical symptoms were recorded after inoculation. After two weeks, conventional MRI and DCE-MRI were performed using 3.0 Tesla scanner. The number of tumors and detection rate were analyzed. After MRI measurements, the tumors were stained with hematoxylin-eosin. RESULTS: No rabbits died during the procedure. The rabbits had common symptoms, including loss of appetite, lassitude and lethargy, etc. at 10.8±1.8 days and 8.4±1.5 days post-inoculation in group A and B, respectively. Each animal in groups A and B re-gained the lost weight within 14 days. Brain metastases could be detected by MRI at 14 days post-inoculation in both groups A and B, with metastases manifesting as nodules in the brain parenchyma and thickening in the meninges. DCE-MRI increased the total detection of tumors compared to non-contrast MRI (P<0.05). The detection rates of T1-weighted image, T2-weighted image and DCE-MRI were 12%, 32% and 100%, respectively (P<0.05). Necropsy revealed nodules or thickening meninges in the gross samples and VX2 tumor cytomorphologic features in the slides, which were consistent with the MRI results. CONCLUSIONS: The VX2 rabbit model of brain metastases is feasible, as verified by MRI and pathologic findings, and may be a suitable platform for future studies of brain metastases. Functional DCE-MRI can be used to evaluate brain metastases in a rabbit model. |
---|