Cargando…
A long non-coding RNA protects the heart from pathological hypertrophy
The role of long noncoding RNA (lncRNA) in adult hearts is unknown; also unclear is how lncRNA modulates nucleosome remodeling. An estimated 70% of mouse genes undergo antisense transcription(1), including myosin heavy chain 7 (Myh7) that encodes molecular motor proteins for heart contraction(2). He...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/ https://www.ncbi.nlm.nih.gov/pubmed/25119045 http://dx.doi.org/10.1038/nature13596 |
Sumario: | The role of long noncoding RNA (lncRNA) in adult hearts is unknown; also unclear is how lncRNA modulates nucleosome remodeling. An estimated 70% of mouse genes undergo antisense transcription(1), including myosin heavy chain 7 (Myh7) that encodes molecular motor proteins for heart contraction(2). Here, we identify a cluster of lncRNA transcripts from Myh7 loci and show a new lncRNA–chromatin mechanism for heart failure. In mice, these transcripts, which we named Myosin Heavy Chain Associated RNA Transcripts (MyHEART or Mhrt), are cardiac-specific and abundant in adult hearts. Pathological stress activates the Brg1-Hdac-Parp chromatin repressor complex(3) to inhibit Mhrt transcription in the heart. Such stress-induced Mhrt repression is essential for cardiomyopathy to develop: restoring Mhrt to the pre-stress level protects the heart from hypertrophy and failure. Mhrt antagonizes the function of Brg1, a chromatin-remodeling factor that is activated by stress to trigger aberrant gene expression and cardiac myopathy(3). Mhrt prevents Brg1 from recognizing its genomic DNA targets, thus inhibiting chromatin targeting and gene regulation by Brg1. Mhrt binds to the helicase domain of Brg1, and this domain is crucial for tethering Brg1 to chromatinized DNA targets. Brg1 helicase has dual nucleic acid-binding specificities: it is capable of binding lncRNA (Mhrt) and chromatinized—but not naked—DNA. This dual-binding feature of helicase enables a competitive inhibition mechanism by which Mhrt sequesters Brg1 from its genomic DNA targets to prevent chromatin remodeling. A Mhrt-Brg1 feedback circuit is thus crucial for heart function. Human MHRT also originates from MYH7 loci and is repressed in various types of myopathic hearts, suggesting a conserved lncRNA mechanism in human cardiomyopathy. Our studies identify the first cardioprotective lncRNA, define a new targeting mechanism for ATP-dependent chromatin-remodeling factors, and establish a new paradigm for lncRNA–chromatin interaction. |
---|