Cargando…

Effect of Nitric Oxide Pathway Regulation on Water/Sodium Balance and Renal Function in a Rodent Model of Acute Liver and Renal Failure

BACKGROUND: The pathomechanism of acute hepatorenal syndrome (HRS), a particular form of acute renal failure that occurs in the course of acute liver injury, is still poorly understood. The aim of our study was to estimate the influence of the activation and inhibition of the nitric oxide pathway on...

Descripción completa

Detalles Bibliográficos
Autores principales: Saracyn, Marek, Ząbkowski, Tomasz, Zdanowski, Robert, Brytan, Marek, Patera, Janusz, Nowak, Zbigniew, Kade, Grzegorz, Wańkowicz, Zofia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186324/
https://www.ncbi.nlm.nih.gov/pubmed/25270512
http://dx.doi.org/10.12659/MSM.890757
Descripción
Sumario:BACKGROUND: The pathomechanism of acute hepatorenal syndrome (HRS), a particular form of acute renal failure that occurs in the course of acute liver injury, is still poorly understood. The aim of our study was to estimate the influence of the activation and inhibition of the nitric oxide pathway on the water/sodium balance and development of acute renal failure in the course of HRS. MATERIAL/METHODS: We used male Sprague-Dawley rats in the acute galactosamine (Ga1N) model of HRS. The nitric oxide synthase (NOS) inhibitors L-NAME and L-arginine were administered intraperitoneally before and after liver damage. RESULTS: HRS developed in all tested groups. L-NAME increased osmotic clearance and urine volume more effectively before liver injury. Furthermore, administration of L-NAME increased creatinine clearance both before and after Ga1N injection. A double dose of L-NAME did not yield further improvement before Ga1N injection, but improved creatinine clearance after Ga1N intoxication. Injection of L-arginine increased sodium excretion and urine volume, but only after liver injury. Moreover, L-arginine injected after Ga1N caused significant improvement of the creatinine clearance in a dose-dependent manner. CONCLUSIONS: Our study shows that inhibition of the nitric oxide pathway improves parameters of water and sodium balance and prevents development of acute renal failure in the course of acute liver injury and liver failure. Activation of the nitric oxide system also has a favorable influence on water/sodium balance and renal failure, but only after liver injury.