Cargando…

Cellular and molecular mechanism study of declined intestinal transit function in the cholesterol gallstone formation process of the guinea pig

The aim of this study was to investigate the cellular and molecular mechanisms of declined intestinal transit (IT) function in the cholesterol gallstone (CG) formation process. Forty guinea pigs were divided into an experimental group (EG) and a control group (CoG), and the reverse transcription-pol...

Descripción completa

Detalles Bibliográficos
Autores principales: FAN, YING, WU, SHUODONG, YIN, ZHENHUA, FU, BEI-BEI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186406/
https://www.ncbi.nlm.nih.gov/pubmed/25289052
http://dx.doi.org/10.3892/etm.2014.1943
Descripción
Sumario:The aim of this study was to investigate the cellular and molecular mechanisms of declined intestinal transit (IT) function in the cholesterol gallstone (CG) formation process. Forty guinea pigs were divided into an experimental group (EG) and a control group (CoG), and the reverse transcription-polymerase chain reaction (RT-PCR) was performed for the analysis of c-kit and stem cell factor (scf) mRNA expression in the small bowel. In addition, immunofluorescence staining and confocal laser microscopy were performed for the observation of the changes in the number of interstitial cells of Cajal (ICCs) in the terminal ileum of each group. RT-PCR showed that, compared with the CoG, the intestinal c-kit and scf mRNA expression levels in the EG were significantly decreased; the average positive area of ICCs in the ileum in the EG was also significantly reduced. During the diet-induced CG formation procedure, the c-kit and scf mRNA expression levels in the small intestine decreased and the number of ICCs decreased. Inhibition of the c-kit/scf pathway may be involved in the declined IT function during the CG formation process.