Cargando…

Smarter vaccine design will circumvent regulatory T cell-mediated evasion in chronic HIV and HCV infection

Despite years of research, vaccines against HIV and HCV are not yet available, due largely to effective viral immunoevasive mechanisms. A novel escape mechanism observed in viruses that cause chronic infection is suppression of viral-specific effector CD4(+) and CD8(+) T cells by stimulating regulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Moise, Leonard, Terry, Frances, Gutierrez, Andres H., Tassone, Ryan, Losikoff, Phyllis, Gregory, Stephen H., Bailey-Kellogg, Chris, Martin, William D., De Groot, Anne S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186478/
https://www.ncbi.nlm.nih.gov/pubmed/25339942
http://dx.doi.org/10.3389/fmicb.2014.00502
Descripción
Sumario:Despite years of research, vaccines against HIV and HCV are not yet available, due largely to effective viral immunoevasive mechanisms. A novel escape mechanism observed in viruses that cause chronic infection is suppression of viral-specific effector CD4(+) and CD8(+) T cells by stimulating regulatory T cells (Tregs) educated on host sequences during tolerance induction. Viral class II MHC epitopes that share a T cell receptor (TCR)-face with host epitopes may activate Tregs capable of suppressing protective responses. We designed an immunoinformatic algorithm, JanusMatrix, to identify such epitopes and discovered that among human-host viruses, chronic viruses appear more human-like than viruses that cause acute infection. Furthermore, an HCV epitope that activates Tregs in chronically infected patients, but not clearers, shares a TCR-face with numerous human sequences. To boost weak CD4(+) T cell responses associated with persistent infection, vaccines for HIV and HCV must circumvent potential Treg activation that can handicap efficacy. Epitope-driven approaches to vaccine design that involve careful consideration of the T cell subsets primed during immunization will advance HIV and HCV vaccine development.