Cargando…
A pooling-LiNGAM algorithm for effective connectivity analysis of fMRI data
The Independent Component Analysis (ICA)—linear non-Gaussian acyclic model (LiNGAM), an algorithm that can be used to estimate the causal relationship among non-Gaussian distributed data, has the potential value to detect the effective connectivity of human brain areas. Under the assumptions that (a...
Autores principales: | Xu, Lele, Fan, Tingting, Wu, Xia, Chen, KeWei, Guo, Xiaojuan, Zhang, Jiacai, Yao, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186480/ https://www.ncbi.nlm.nih.gov/pubmed/25339895 http://dx.doi.org/10.3389/fncom.2014.00125 |
Ejemplares similares
-
Causal relations of health indices inferred statistically using the DirectLiNGAM algorithm from big data of Osaka prefecture health checkups
por: Kotoku, Jun’ichi, et al.
Publicado: (2020) -
LINGAM AS A SACRED OBJECT AND THE HEAD-DRESS OF SUFI RESEMBLING IT
por: Mahdihassan, S.
Publicado: (1990) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
por: Xu, Yuting, et al.
Publicado: (2015) -
A Two-selection Analysis of the Lineshape and Asymmetry in the e^+e^--> e^+e^-(ngam) Reaction
por: Hern\'andez, J J, et al.
Publicado: (1992)