Cargando…

Suppressor of Zeste 12 homolog RNA interference inhibits retinoblastoma cell invasion

Suppressor of Zeste 12 homolog (SUZ12) is known to regulate tumor phenotype through altering gene expression, with an important regulatory role in tumor genesis and development. SUZ12 has been widely investigated; however, no studies regarding the role of the SUZ12 gene in retinoblastoma (RB) have b...

Descripción completa

Detalles Bibliográficos
Autores principales: ZHOU, MIN, SUN, JIANNAN, LIU, YUJING, MA, JIA
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186612/
https://www.ncbi.nlm.nih.gov/pubmed/25295075
http://dx.doi.org/10.3892/ol.2014.2462
Descripción
Sumario:Suppressor of Zeste 12 homolog (SUZ12) is known to regulate tumor phenotype through altering gene expression, with an important regulatory role in tumor genesis and development. SUZ12 has been widely investigated; however, no studies regarding the role of the SUZ12 gene in retinoblastoma (RB) have been conducted. In this study, SUZ12 small interfering (si)RNA was transfected into SO-RB50 human RB cells. The influence of SUZ siRNA on RB cell invasion was detected using a soft agar colony forming assay and a Transwell cabin model. The effect of the SUZ12 siRNA on the expression levels of the associated proteins, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-9 and MMP-2, was detected by western blotting. The number of cell clones was found to be reduced by the siRNA in a dose-dependent manner, and the number of cells that had permeated through the filter membrane was reduced following transfection with the siRNA. SUZ12 inhibition resulted in a marked reduction in VEGF, MMP-2 and MMP-9 expression levels (0.26±0.04, 0.16±0.02 and 0.12±0.02, respectively) compared with the levels in the non-transfected group (0.80±0.10, 0.94±0.16 and 1.15±0.18, respectively) (P<0.01). In conclusion, SUZ12 siRNA inhibited cell invasion and the expression of VEGF, MMP-2 and MMP-9 in SO-RB50 retinoblastoma cells.