Cargando…

The Presence of Fast-Exchanging Proton Species in Aqueous Solutions of paraCEST Agents Can Impact Rate Constants Measured for Slower Exchanging Species When Fitting CEST Spectra to the Bloch Equations

[Image: see text] LnDOTA-tetraamide complexes typically exist in solution as a mixture of square-antiprismatic (SAP) and twisted square-antiprismatic (TSAP) coordination isomers. In most cases, the SAP isomer, which is preferred for CEST imaging, predominates, and the presence of the minor TSAP isom...

Descripción completa

Detalles Bibliográficos
Autores principales: Evbuomwan, Osasere M., Lee, Joohwan, Woods, Mark, Sherry, A. Dean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186665/
https://www.ncbi.nlm.nih.gov/pubmed/25210979
http://dx.doi.org/10.1021/ic501290q
Descripción
Sumario:[Image: see text] LnDOTA-tetraamide complexes typically exist in solution as a mixture of square-antiprismatic (SAP) and twisted square-antiprismatic (TSAP) coordination isomers. In most cases, the SAP isomer, which is preferred for CEST imaging, predominates, and the presence of the minor TSAP isomer is assumed to have little influence on quantitative measures of the water-exchange rate constant for the SAP isomer. Here, we sought to confirm the validity of this assumption by mixing two chelates with different SAP and TSAP isomer populations while measuring the water-exchange rate constant of the SAP isomer. The results show that an increase in the population of the TSAP isomer in solution results in as much as a 30% overestimation of the water-exchange rate constant for the SAP isomer when CEST spectra are fit to the Bloch equations. This effect was shown to be significant only when the TSAP isomer population exceeded 50%.