Cargando…
Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice
In man, mutations of the megalin-encoding gene causes the rare Donnai-Barrow/Facio-Oculo-Acoustico-Renal Syndrome, which is partially characterized by high-grade myopia. Previous studies of renal megalin function have established that megalin is crucial for conservation of renal filtered nutrients i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186978/ https://www.ncbi.nlm.nih.gov/pubmed/24980834 http://dx.doi.org/10.1007/s00441-014-1919-4 |
_version_ | 1782338140281765888 |
---|---|
author | Storm, Tina Heegaard, Steffen Christensen, Erik I. Nielsen, Rikke |
author_facet | Storm, Tina Heegaard, Steffen Christensen, Erik I. Nielsen, Rikke |
author_sort | Storm, Tina |
collection | PubMed |
description | In man, mutations of the megalin-encoding gene causes the rare Donnai-Barrow/Facio-Oculo-Acoustico-Renal Syndrome, which is partially characterized by high-grade myopia. Previous studies of renal megalin function have established that megalin is crucial for conservation of renal filtered nutrients including vitamin A; however, the role of megalin in ocular physiology and development is presently unknown. Therefore, we investigate ocular megalin expression and the ocular phenotype of megalin-deficient mice. Topographical and subcellular localization of megalin as well as the ocular phenotype of megalin-deficient mice were examined with immunological techniques using light, confocal and electron microscopy. We identified megalin in the retinal pigment epithelium (RPE) and non-pigmented ciliary body epithelium (NPCBE) in normal mouse eyes. Immunocytochemical investigations furthermore showed that megalin localizes to vesicular structures in the RPE and NPCBE cells. Histological investigations of ocular mouse tissue also identified a severe myopia phenotype as well as enlarged RPE melanosomes and abnormal ciliary body development in the megalin-deficient mice. In conclusion, the complex ocular phenotype observed in the megalin-deficient mice suggests that megalin-mediated developmental abnormalities may contribute to the high myopia phenotype observed in the Donnai-Barrow Syndrome patients and, thus, that megalin harbors important roles in ocular development and physiology. Finally, our data show that megalin-deficient mice may provide a valuable model for future studies of megalin in ocular physiology and pathology. |
format | Online Article Text |
id | pubmed-4186978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-41869782014-10-09 Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice Storm, Tina Heegaard, Steffen Christensen, Erik I. Nielsen, Rikke Cell Tissue Res Regular Article In man, mutations of the megalin-encoding gene causes the rare Donnai-Barrow/Facio-Oculo-Acoustico-Renal Syndrome, which is partially characterized by high-grade myopia. Previous studies of renal megalin function have established that megalin is crucial for conservation of renal filtered nutrients including vitamin A; however, the role of megalin in ocular physiology and development is presently unknown. Therefore, we investigate ocular megalin expression and the ocular phenotype of megalin-deficient mice. Topographical and subcellular localization of megalin as well as the ocular phenotype of megalin-deficient mice were examined with immunological techniques using light, confocal and electron microscopy. We identified megalin in the retinal pigment epithelium (RPE) and non-pigmented ciliary body epithelium (NPCBE) in normal mouse eyes. Immunocytochemical investigations furthermore showed that megalin localizes to vesicular structures in the RPE and NPCBE cells. Histological investigations of ocular mouse tissue also identified a severe myopia phenotype as well as enlarged RPE melanosomes and abnormal ciliary body development in the megalin-deficient mice. In conclusion, the complex ocular phenotype observed in the megalin-deficient mice suggests that megalin-mediated developmental abnormalities may contribute to the high myopia phenotype observed in the Donnai-Barrow Syndrome patients and, thus, that megalin harbors important roles in ocular development and physiology. Finally, our data show that megalin-deficient mice may provide a valuable model for future studies of megalin in ocular physiology and pathology. Springer Berlin Heidelberg 2014-07-01 2014 /pmc/articles/PMC4186978/ /pubmed/24980834 http://dx.doi.org/10.1007/s00441-014-1919-4 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open Access This article is distributed under the terms of the Creative Commons Attribution License, which permits any use, distribution and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Regular Article Storm, Tina Heegaard, Steffen Christensen, Erik I. Nielsen, Rikke Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice |
title | Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice |
title_full | Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice |
title_fullStr | Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice |
title_full_unstemmed | Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice |
title_short | Megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice |
title_sort | megalin–deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186978/ https://www.ncbi.nlm.nih.gov/pubmed/24980834 http://dx.doi.org/10.1007/s00441-014-1919-4 |
work_keys_str_mv | AT stormtina megalindeficiencycauseshighmyopiaretinalpigmentepitheliummacromelanosomesandabnormaldevelopmentoftheciliarybodyinmice AT heegaardsteffen megalindeficiencycauseshighmyopiaretinalpigmentepitheliummacromelanosomesandabnormaldevelopmentoftheciliarybodyinmice AT christenseneriki megalindeficiencycauseshighmyopiaretinalpigmentepitheliummacromelanosomesandabnormaldevelopmentoftheciliarybodyinmice AT nielsenrikke megalindeficiencycauseshighmyopiaretinalpigmentepitheliummacromelanosomesandabnormaldevelopmentoftheciliarybodyinmice |