Cargando…
Roles and Regulation of Ketogenesis in Cultured Astroglia and Neurons Under Hypoxia and Hypoglycemia
Exogenous ketone bodies (KBs), acetoacetate (AA), and β-hydroxybutyrate (BHB) act as alternative energy substrates in neural cells under starvation. The present study examined the endogenous ketogenic capacity of astroglia under hypoxia with/without glucose and the possible roles of KBs in neuronal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187005/ https://www.ncbi.nlm.nih.gov/pubmed/25290061 http://dx.doi.org/10.1177/1759091414550997 |
Sumario: | Exogenous ketone bodies (KBs), acetoacetate (AA), and β-hydroxybutyrate (BHB) act as alternative energy substrates in neural cells under starvation. The present study examined the endogenous ketogenic capacity of astroglia under hypoxia with/without glucose and the possible roles of KBs in neuronal energy metabolism. Cultured neurons and astroglia were prepared from Sprague-Dawley rats. Palmitic acid (PAL) and l-carnitine (LC) were added to the assay medium. The 4- to 24-hr production of AA and BHB was measured using the cyclic thio-NADH method. (14)C-labeled acid-soluble products (KBs) and (14)CO(2) produced from [1-(14)C]PAL were also measured. l-[U-(14)C]lactic acid ([(14)C]LAC), [1-(14)C]pyruvic acid ([(14)C]PYR), or β-[1-(14)C]hydroxybutyric acid ([(14)C]BHB) was used to compare the oxidative metabolism of the glycolysis end products with that of the KBs. Some cells were placed in a hypoxic chamber (1% O(2)). PAL and LC induced a higher production of KBs in astroglia than in neurons, while the CO(2) production from PAL was less than 5% of the KB production in both astroglia and neurons. KB production in astroglia was augmented by the AMP-activated protein kinase activators, AICAR and metformin, as well as hypoxia with/without glucose. Neuronal KB production increased under hypoxia in the absence of PAL and LC. In neurons, [(14)C]LAC and [(14)C]PYR oxidation decreased after 24 hr of hypoxia, while [(14)C]BHB oxidation was preserved. Astroglia responds to ischemia in vitro by enhancing KB production, and astroglia-produced KBs derived from fatty acid might serve as a neuronal energy substrate for the tricarboxylic acid cycle instead of lactate, as pyruvate dehydrogenase is susceptible to ischemia. |
---|