Cargando…
The Emotion Recognition System Based on Autoregressive Model and Sequential Forward Feature Selection of Electroencephalogram Signals
Electroencephalogram (EEG) is one of the useful biological signals to distinguish different brain diseases and mental states. In recent years, detecting different emotional states from biological signals has been merged more attention by researchers and several feature extraction methods and classif...
Autores principales: | Hatamikia, Sepideh, Maghooli, Keivan, Nasrabadi, Ali Motie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187354/ https://www.ncbi.nlm.nih.gov/pubmed/25298928 |
Ejemplares similares
-
A novel approach to emotion recognition using local subset feature selection and modified Dempster-Shafer theory
por: Zangeneh Soroush, Morteza, et al.
Publicado: (2018) -
Nonlinear Analysis of Electroencephalogram Signals while Listening to the Holy Quran
por: Vaghefi, Mahsa, et al.
Publicado: (2019) -
A Spherical Phase Space Partitioning Based Symbolic Time Series Analysis (SPSP—STSA) for Emotion Recognition Using EEG Signals
por: Tavakkoli, Hoda, et al.
Publicado: (2022) -
A Hybrid EEG-based Emotion Recognition Approach Using Wavelet Convolutional Neural Networks and Support Vector Machine
por: Bagherzadeh, Sara, et al.
Publicado: (2023) -
Electroencephalogram Emotion Recognition Based on 3D Feature Fusion and Convolutional Autoencoder
por: An, Yanling, et al.
Publicado: (2021)