Cargando…

Nuclear Localization of α1A‐Adrenergic Receptors Is Required for Signaling in Cardiac Myocytes: An “Inside‐Out” α1‐AR Signaling Pathway

BACKGROUND: Recent studies indicate that α1‐adrenergic receptors (α1‐ARs) are cardioprotective by preventing cardiac myocyte death and augmenting contractility in heart failure. Although G‐protein‐coupled receptors are assumed to localize to and signal at the plasma membrane, we previously demonstra...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Steven C., Dahl, Erika F., Wright, Casey D., Cypher, Andrew L., Healy, Chastity L., O'Connell, Timothy D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187477/
https://www.ncbi.nlm.nih.gov/pubmed/24772522
http://dx.doi.org/10.1161/JAHA.113.000145
Descripción
Sumario:BACKGROUND: Recent studies indicate that α1‐adrenergic receptors (α1‐ARs) are cardioprotective by preventing cardiac myocyte death and augmenting contractility in heart failure. Although G‐protein‐coupled receptors are assumed to localize to and signal at the plasma membrane, we previously demonstrated that endogenous α1‐ARs localize to the nuclei in adult cardiac myocytes. However, the functional consequence of this nuclear localization remains unclear. Here, we attempted to reconcile nuclear localization of α1‐ARs with their physiologic function by examining α1‐AR‐induced contractility in adult cardiac myocytes. METHODS AND RESULTS: By measuring shortening in unloaded, cultured adult cardiac myocytes, we found that the α1A‐subtype regulated contractility through phosphorylation of cardiac troponin I (cTnI) at the protein kinase C (PKC) site, threonine 144. Reconstitution of an α1A‐subtype nuclear localization mutant in cardiac myocytes lacking α1‐ARs failed to rescue nuclear α1A‐mediated phosphorylation of cTnI and myocyte contractility. Leptomycin B, the nuclear export inhibitor, also blocked α1A‐mediated phosphorylation of cTnI. These data indicate that α1‐AR signaling originates in the nucleus. Consistent with these observations, we localized the α1A‐subtype to the inner nuclear membrane, identified PKCα, δ, and ε in the nucleus, and found that α1‐ARs activate PKCδ in nuclei isolated from adult cardiac myocytes. Finally, we found that a PKCδ nuclear localization mutant blunted α1‐induced phosphorylation of cTnI. CONCLUSIONS: Together, our data identify a novel, “inside‐out” nuclear α1A‐subtype/PKCδ/cTnI‐signaling pathway that regulates contractile function in adult cardiac myocytes. Importantly, these data help resolve the discrepancy between nuclear localization of α1‐ARs and α1‐AR‐mediated physiologic function.