Cargando…
CLC channel function and dysfunction in health and disease
CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through −7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is man...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188032/ https://www.ncbi.nlm.nih.gov/pubmed/25339907 http://dx.doi.org/10.3389/fphys.2014.00378 |
_version_ | 1782338210911748096 |
---|---|
author | Stölting, Gabriel Fischer, Martin Fahlke, Christoph |
author_facet | Stölting, Gabriel Fischer, Martin Fahlke, Christoph |
author_sort | Stölting, Gabriel |
collection | PubMed |
description | CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through −7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of ClC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels impairs NaCl resorption in the limb of Henle and causes hyponatriaemia, hypovolemia and hypotension in patients suffering from Bartter syndrome. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological, and genetic studies. |
format | Online Article Text |
id | pubmed-4188032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-41880322014-10-22 CLC channel function and dysfunction in health and disease Stölting, Gabriel Fischer, Martin Fahlke, Christoph Front Physiol Physiology CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through −7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of ClC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels impairs NaCl resorption in the limb of Henle and causes hyponatriaemia, hypovolemia and hypotension in patients suffering from Bartter syndrome. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological, and genetic studies. Frontiers Media S.A. 2014-10-07 /pmc/articles/PMC4188032/ /pubmed/25339907 http://dx.doi.org/10.3389/fphys.2014.00378 Text en Copyright © 2014 Stölting, Fischer and Fahlke. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Stölting, Gabriel Fischer, Martin Fahlke, Christoph CLC channel function and dysfunction in health and disease |
title | CLC channel function and dysfunction in health and disease |
title_full | CLC channel function and dysfunction in health and disease |
title_fullStr | CLC channel function and dysfunction in health and disease |
title_full_unstemmed | CLC channel function and dysfunction in health and disease |
title_short | CLC channel function and dysfunction in health and disease |
title_sort | clc channel function and dysfunction in health and disease |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188032/ https://www.ncbi.nlm.nih.gov/pubmed/25339907 http://dx.doi.org/10.3389/fphys.2014.00378 |
work_keys_str_mv | AT stoltinggabriel clcchannelfunctionanddysfunctioninhealthanddisease AT fischermartin clcchannelfunctionanddysfunctioninhealthanddisease AT fahlkechristoph clcchannelfunctionanddysfunctioninhealthanddisease |