Cargando…
Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions
The ERK1/2 MAP kinase pathway is an evolutionarily conserved signaling module that controls many fundamental physiological processes. Deregulated activity of ERK1/2 MAP kinases is associated with developmental syndromes and several human diseases. Despite the importance of this pathway, a comprehens...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Molecular Biology Organization
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188273/ https://www.ncbi.nlm.nih.gov/pubmed/23712012 http://dx.doi.org/10.1038/msb.2013.25 |
_version_ | 1782338229066792960 |
---|---|
author | Courcelles, Mathieu Frémin, Christophe Voisin, Laure Lemieux, Sébastien Meloche, Sylvain Thibault, Pierre |
author_facet | Courcelles, Mathieu Frémin, Christophe Voisin, Laure Lemieux, Sébastien Meloche, Sylvain Thibault, Pierre |
author_sort | Courcelles, Mathieu |
collection | PubMed |
description | The ERK1/2 MAP kinase pathway is an evolutionarily conserved signaling module that controls many fundamental physiological processes. Deregulated activity of ERK1/2 MAP kinases is associated with developmental syndromes and several human diseases. Despite the importance of this pathway, a comprehensive picture of the natural substrate repertoire and biochemical mechanisms regulated by ERK1/2 is still lacking. In this study, we used large-scale quantitative phosphoproteomics and bioinformatics analyses to identify novel candidate ERK1/2 substrates based on their phosphorylation signature and kinetic profiles in epithelial cells. We identified a total of 7936 phosphorylation sites within 1861 proteins, of which 155 classify as candidate ERK1/2 substrates, including 128 new targets. Candidate ERK1/2 substrates are involved in diverse cellular processes including transcriptional regulation, chromatin remodeling, RNA splicing, cytoskeleton dynamics, cellular junctions and cell signaling. Detailed characterization of one newly identified substrate, the transcriptional regulator JunB, revealed that ERK1/2 phosphorylate JunB on a serine adjacent to the DNA-binding domain, resulting in increased DNA-binding affinity and transcriptional activity. Our study expands the spectrum of cellular functions controlled by ERK1/2 kinases. |
format | Online Article Text |
id | pubmed-4188273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | European Molecular Biology Organization |
record_format | MEDLINE/PubMed |
spelling | pubmed-41882732014-10-07 Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions Courcelles, Mathieu Frémin, Christophe Voisin, Laure Lemieux, Sébastien Meloche, Sylvain Thibault, Pierre Mol Syst Biol Article The ERK1/2 MAP kinase pathway is an evolutionarily conserved signaling module that controls many fundamental physiological processes. Deregulated activity of ERK1/2 MAP kinases is associated with developmental syndromes and several human diseases. Despite the importance of this pathway, a comprehensive picture of the natural substrate repertoire and biochemical mechanisms regulated by ERK1/2 is still lacking. In this study, we used large-scale quantitative phosphoproteomics and bioinformatics analyses to identify novel candidate ERK1/2 substrates based on their phosphorylation signature and kinetic profiles in epithelial cells. We identified a total of 7936 phosphorylation sites within 1861 proteins, of which 155 classify as candidate ERK1/2 substrates, including 128 new targets. Candidate ERK1/2 substrates are involved in diverse cellular processes including transcriptional regulation, chromatin remodeling, RNA splicing, cytoskeleton dynamics, cellular junctions and cell signaling. Detailed characterization of one newly identified substrate, the transcriptional regulator JunB, revealed that ERK1/2 phosphorylate JunB on a serine adjacent to the DNA-binding domain, resulting in increased DNA-binding affinity and transcriptional activity. Our study expands the spectrum of cellular functions controlled by ERK1/2 kinases. European Molecular Biology Organization 2013-05-28 /pmc/articles/PMC4188273/ /pubmed/23712012 http://dx.doi.org/10.1038/msb.2013.25 Text en Copyright © 2013, EMBO and Macmillan Publishers Limited https://creativecommons.org/licenses/by-nc-sa/3.0/This article is licensed under a Creative Commons Attribution Noncommercial Share Alike 3.0 Unported Licence. To view a copy of this licence visit http://creativecommons.org/licenses/by-nc-sa/3.0/ (https://creativecommons.org/licenses/by-nc-sa/3.0/) . |
spellingShingle | Article Courcelles, Mathieu Frémin, Christophe Voisin, Laure Lemieux, Sébastien Meloche, Sylvain Thibault, Pierre Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions |
title | Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions |
title_full | Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions |
title_fullStr | Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions |
title_full_unstemmed | Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions |
title_short | Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions |
title_sort | phosphoproteome dynamics reveal novel erk1/2 map kinase substrates with broad spectrum of functions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188273/ https://www.ncbi.nlm.nih.gov/pubmed/23712012 http://dx.doi.org/10.1038/msb.2013.25 |
work_keys_str_mv | AT courcellesmathieu phosphoproteomedynamicsrevealnovelerk12mapkinasesubstrateswithbroadspectrumoffunctions AT freminchristophe phosphoproteomedynamicsrevealnovelerk12mapkinasesubstrateswithbroadspectrumoffunctions AT voisinlaure phosphoproteomedynamicsrevealnovelerk12mapkinasesubstrateswithbroadspectrumoffunctions AT lemieuxsebastien phosphoproteomedynamicsrevealnovelerk12mapkinasesubstrateswithbroadspectrumoffunctions AT melochesylvain phosphoproteomedynamicsrevealnovelerk12mapkinasesubstrateswithbroadspectrumoffunctions AT thibaultpierre phosphoproteomedynamicsrevealnovelerk12mapkinasesubstrateswithbroadspectrumoffunctions |