Cargando…

High Sensitivity Combined with Extended Structural Coverage of Labile Compounds via Nanoelectrospray Ionization at Subambient Pressures

[Image: see text] Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for increased sensitivity in mass spectrometry (MS) analysis. Here we present evidence that the SPIN source not only...

Descripción completa

Detalles Bibliográficos
Autores principales: Cox, Jonathan T., Kronewitter, Scott R., Shukla, Anil K., Moore, Ronald J., Smith, Richard D., Tang, Keqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188276/
https://www.ncbi.nlm.nih.gov/pubmed/25222651
http://dx.doi.org/10.1021/ac502767y
Descripción
Sumario:[Image: see text] Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for increased sensitivity in mass spectrometry (MS) analysis. Here we present evidence that the SPIN source not only improves MS sensitivity but also facilitates the detection of more labile compounds. The gentleness of conventional heated capillary electrospray ionization (ESI) and the SPIN designs was compared in conjunction with the liquid chromatography mass spectrometry (LC–MS) analysis of colominic acid and N-glycans containing sialic acid. Prior experiments conducted with the SPIN interface demonstrated the ability to detect labile glycans such as heavily sialylated and polysialic acid N-glycans, which are difficult to detect with a conventional ESI-MS interface. Colominic acid is a mixture of sialic acid polymers of different lengths containing labile glycosidic linkages between monomer units necessitating a gentle ion source. These labile covalent bonds may display similar behavior to sialic acid chains in N-glycans during MS analysis. By coupling the SPIN source with high-resolution mass spectrometry and using advanced data processing tools, we demonstrate much extended coverage of sialic acid polymer chains as compared to conventional ESI-MS and the ability to detect sialic acid containing N-glycans without the need of sample derivatization. In addition, we show that SPIN-LC–MS is effective in elucidating polymer features with high efficiency and high sensitivity previously unattainable by the conventional ESI-LC–MS methods.