Cargando…
Polyomavirus-Associated Trichodysplasia Spinulosa Involves Hyperproliferation, pRB Phosphorylation and Upregulation of p16 and p21
Trichodysplasia spinulosa (TS) is a proliferative skin disease observed in severely immunocompromized patients. It is characterized by papule and trichohyalin-rich spicule formation, epidermal acanthosis and distention of dysmorphic hair follicles overpopulated by inner root sheath cells (IRS). TS p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188587/ https://www.ncbi.nlm.nih.gov/pubmed/25291363 http://dx.doi.org/10.1371/journal.pone.0108947 |
_version_ | 1782338251124637696 |
---|---|
author | Kazem, Siamaque van der Meijden, Els Wang, Richard C. Rosenberg, Arlene S. Pope, Elena Benoit, Taylor Fleckman, Philip Feltkamp, Mariet C. W. |
author_facet | Kazem, Siamaque van der Meijden, Els Wang, Richard C. Rosenberg, Arlene S. Pope, Elena Benoit, Taylor Fleckman, Philip Feltkamp, Mariet C. W. |
author_sort | Kazem, Siamaque |
collection | PubMed |
description | Trichodysplasia spinulosa (TS) is a proliferative skin disease observed in severely immunocompromized patients. It is characterized by papule and trichohyalin-rich spicule formation, epidermal acanthosis and distention of dysmorphic hair follicles overpopulated by inner root sheath cells (IRS). TS probably results from active infection with the TS-associated polyomavirus (TSPyV), as indicated by high viral-load, virus protein expression and particle formation. The underlying pathogenic mechanism imposed by TSPyV infection has not been solved yet. By analogy with other polyomaviruses, such as the Merkel cell polyomavirus associated with Merkel cell carcinoma, we hypothesized that TSPyV T-antigen promotes proliferation of infected IRS cells. Therefore, we analyzed TS biopsy sections for markers of cell proliferation (Ki-67) and cell cycle regulation (p16(ink4a), p21(waf), pRB, phosphorylated pRB), and the putatively transforming TSPyV early large tumor (LT) antigen. Intense Ki-67 staining was detected especially in the margins of TS hair follicles, which colocalized with TSPyV LT-antigen detection. In this area, staining was also noted for pRB and particularly phosphorylated pRB, as well as p16(ink4a) and p21(waf). Healthy control hair follicles did not or hardly stained for these markers. Trichohyalin was particularly detected in the center of TS follicles that stained negative for Ki-67 and TSPyV LT-antigen. In summary, we provide evidence for clustering of TSPyV LT-antigen-expressing and proliferating cells in the follicle margins that overproduce negative cell cycle regulatory proteins. These data are compatible with a scenario of TSPyV T-antigen-mediated cell cycle progression, potentially creating a pool of proliferating cells that enable viral DNA replication and drive papule and spicule formation. |
format | Online Article Text |
id | pubmed-4188587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41885872014-10-10 Polyomavirus-Associated Trichodysplasia Spinulosa Involves Hyperproliferation, pRB Phosphorylation and Upregulation of p16 and p21 Kazem, Siamaque van der Meijden, Els Wang, Richard C. Rosenberg, Arlene S. Pope, Elena Benoit, Taylor Fleckman, Philip Feltkamp, Mariet C. W. PLoS One Research Article Trichodysplasia spinulosa (TS) is a proliferative skin disease observed in severely immunocompromized patients. It is characterized by papule and trichohyalin-rich spicule formation, epidermal acanthosis and distention of dysmorphic hair follicles overpopulated by inner root sheath cells (IRS). TS probably results from active infection with the TS-associated polyomavirus (TSPyV), as indicated by high viral-load, virus protein expression and particle formation. The underlying pathogenic mechanism imposed by TSPyV infection has not been solved yet. By analogy with other polyomaviruses, such as the Merkel cell polyomavirus associated with Merkel cell carcinoma, we hypothesized that TSPyV T-antigen promotes proliferation of infected IRS cells. Therefore, we analyzed TS biopsy sections for markers of cell proliferation (Ki-67) and cell cycle regulation (p16(ink4a), p21(waf), pRB, phosphorylated pRB), and the putatively transforming TSPyV early large tumor (LT) antigen. Intense Ki-67 staining was detected especially in the margins of TS hair follicles, which colocalized with TSPyV LT-antigen detection. In this area, staining was also noted for pRB and particularly phosphorylated pRB, as well as p16(ink4a) and p21(waf). Healthy control hair follicles did not or hardly stained for these markers. Trichohyalin was particularly detected in the center of TS follicles that stained negative for Ki-67 and TSPyV LT-antigen. In summary, we provide evidence for clustering of TSPyV LT-antigen-expressing and proliferating cells in the follicle margins that overproduce negative cell cycle regulatory proteins. These data are compatible with a scenario of TSPyV T-antigen-mediated cell cycle progression, potentially creating a pool of proliferating cells that enable viral DNA replication and drive papule and spicule formation. Public Library of Science 2014-10-07 /pmc/articles/PMC4188587/ /pubmed/25291363 http://dx.doi.org/10.1371/journal.pone.0108947 Text en © 2014 Kazem et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kazem, Siamaque van der Meijden, Els Wang, Richard C. Rosenberg, Arlene S. Pope, Elena Benoit, Taylor Fleckman, Philip Feltkamp, Mariet C. W. Polyomavirus-Associated Trichodysplasia Spinulosa Involves Hyperproliferation, pRB Phosphorylation and Upregulation of p16 and p21 |
title | Polyomavirus-Associated Trichodysplasia Spinulosa Involves Hyperproliferation, pRB Phosphorylation and Upregulation of p16 and p21 |
title_full | Polyomavirus-Associated Trichodysplasia Spinulosa Involves Hyperproliferation, pRB Phosphorylation and Upregulation of p16 and p21 |
title_fullStr | Polyomavirus-Associated Trichodysplasia Spinulosa Involves Hyperproliferation, pRB Phosphorylation and Upregulation of p16 and p21 |
title_full_unstemmed | Polyomavirus-Associated Trichodysplasia Spinulosa Involves Hyperproliferation, pRB Phosphorylation and Upregulation of p16 and p21 |
title_short | Polyomavirus-Associated Trichodysplasia Spinulosa Involves Hyperproliferation, pRB Phosphorylation and Upregulation of p16 and p21 |
title_sort | polyomavirus-associated trichodysplasia spinulosa involves hyperproliferation, prb phosphorylation and upregulation of p16 and p21 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188587/ https://www.ncbi.nlm.nih.gov/pubmed/25291363 http://dx.doi.org/10.1371/journal.pone.0108947 |
work_keys_str_mv | AT kazemsiamaque polyomavirusassociatedtrichodysplasiaspinulosainvolveshyperproliferationprbphosphorylationandupregulationofp16andp21 AT vandermeijdenels polyomavirusassociatedtrichodysplasiaspinulosainvolveshyperproliferationprbphosphorylationandupregulationofp16andp21 AT wangrichardc polyomavirusassociatedtrichodysplasiaspinulosainvolveshyperproliferationprbphosphorylationandupregulationofp16andp21 AT rosenbergarlenes polyomavirusassociatedtrichodysplasiaspinulosainvolveshyperproliferationprbphosphorylationandupregulationofp16andp21 AT popeelena polyomavirusassociatedtrichodysplasiaspinulosainvolveshyperproliferationprbphosphorylationandupregulationofp16andp21 AT benoittaylor polyomavirusassociatedtrichodysplasiaspinulosainvolveshyperproliferationprbphosphorylationandupregulationofp16andp21 AT fleckmanphilip polyomavirusassociatedtrichodysplasiaspinulosainvolveshyperproliferationprbphosphorylationandupregulationofp16andp21 AT feltkampmarietcw polyomavirusassociatedtrichodysplasiaspinulosainvolveshyperproliferationprbphosphorylationandupregulationofp16andp21 |