Cargando…
A Compound Fault Diagnosis for Rolling Bearings Method Based on Blind Source Separation and Ensemble Empirical Mode Decomposition
A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In o...
Autores principales: | Wang, Huaqing, Li, Ruitong, Tang, Gang, Yuan, Hongfang, Zhao, Qingliang, Cao, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188612/ https://www.ncbi.nlm.nih.gov/pubmed/25289644 http://dx.doi.org/10.1371/journal.pone.0109166 |
Ejemplares similares
-
Underdetermined Blind Source Separation with Variational Mode Decomposition for Compound Roller Bearing Fault Signals
por: Tang, Gang, et al.
Publicado: (2016) -
A Comprehensive Fault Diagnosis Method for Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Fast Ensemble Empirical Mode Decomposition
por: Zhang, Weibo, et al.
Publicado: (2019) -
Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
por: Dang, Zhang, et al.
Publicado: (2018) -
Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
por: Hu, Lei, et al.
Publicado: (2022) -
Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
por: Lei, Yaguo, et al.
Publicado: (2013)