Cargando…

Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH

Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic expression of the metabolic syndrome, and its prevalence is increasing. The factors that influence the development of fatty liver and its progression to steatohepatitis and cirrhosis are not well understood. The pleiotropic hormone,...

Descripción completa

Detalles Bibliográficos
Autores principales: Nordstrom, Sarah M., Tran, Jennifer L., Sos, Brandon C., Wagner, Kay-Uwe, Weiss, Ethan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Endocrine Society 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188962/
https://www.ncbi.nlm.nih.gov/pubmed/23782652
http://dx.doi.org/10.1210/me.2013-1110
_version_ 1782338290746130432
author Nordstrom, Sarah M.
Tran, Jennifer L.
Sos, Brandon C.
Wagner, Kay-Uwe
Weiss, Ethan J.
author_facet Nordstrom, Sarah M.
Tran, Jennifer L.
Sos, Brandon C.
Wagner, Kay-Uwe
Weiss, Ethan J.
author_sort Nordstrom, Sarah M.
collection PubMed
description Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic expression of the metabolic syndrome, and its prevalence is increasing. The factors that influence the development of fatty liver and its progression to steatohepatitis and cirrhosis are not well understood. The pleiotropic hormone, GH, has been associated with an increased risk of NAFLD in humans and mice. GH is known to have diverse effects on lipid metabolism including decreasing body fat in vivo, presumably through stimulation of lipolysis via an undefined mechanism. Previously we described mice with hepatocyte-specific deletion of the GH signaling mediator, Janus kinase 2 (JAK2L). JAK2L animals have elevated serum GH, reduced body fat, high liver triglyceride content, and increased serum markers of hepatocyte injury (alanine transaminase and aspartate transaminase). We aimed to determine whether the elevation of GH in JAK2L mice contributed to fatty liver by promoting lipolysis directly in adipocytes. We generated mice with adipocyte-specific disruption of JAK2 (JAK2A) and found that GH resistance in adipocytes reduced lipolysis and increased body fat. JAK2A mice were then crossed to JAK2L mice, and the resultant JAK2L/A animals had increased body fat and decreased lipolysis, despite elevated circulating GH. Furthermore, the increased triglyceride content, serum alanine transaminase, and serum aspartate transaminase observed in JAK2L mice were nearly normalized with the additional disruption of JAK2 in adipocytes (JAK2L/A mice). Our results offer novel mechanistic insights into the long-recognized effects of GH on lipid flux and suggest that GH signaling may play an important regulatory role in the development of NAFLD.
format Online
Article
Text
id pubmed-4188962
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Endocrine Society
record_format MEDLINE/PubMed
spelling pubmed-41889622014-10-27 Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH Nordstrom, Sarah M. Tran, Jennifer L. Sos, Brandon C. Wagner, Kay-Uwe Weiss, Ethan J. Mol Endocrinol Original Research Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic expression of the metabolic syndrome, and its prevalence is increasing. The factors that influence the development of fatty liver and its progression to steatohepatitis and cirrhosis are not well understood. The pleiotropic hormone, GH, has been associated with an increased risk of NAFLD in humans and mice. GH is known to have diverse effects on lipid metabolism including decreasing body fat in vivo, presumably through stimulation of lipolysis via an undefined mechanism. Previously we described mice with hepatocyte-specific deletion of the GH signaling mediator, Janus kinase 2 (JAK2L). JAK2L animals have elevated serum GH, reduced body fat, high liver triglyceride content, and increased serum markers of hepatocyte injury (alanine transaminase and aspartate transaminase). We aimed to determine whether the elevation of GH in JAK2L mice contributed to fatty liver by promoting lipolysis directly in adipocytes. We generated mice with adipocyte-specific disruption of JAK2 (JAK2A) and found that GH resistance in adipocytes reduced lipolysis and increased body fat. JAK2A mice were then crossed to JAK2L mice, and the resultant JAK2L/A animals had increased body fat and decreased lipolysis, despite elevated circulating GH. Furthermore, the increased triglyceride content, serum alanine transaminase, and serum aspartate transaminase observed in JAK2L mice were nearly normalized with the additional disruption of JAK2 in adipocytes (JAK2L/A mice). Our results offer novel mechanistic insights into the long-recognized effects of GH on lipid flux and suggest that GH signaling may play an important regulatory role in the development of NAFLD. Endocrine Society 2013-08 2013-06-19 /pmc/articles/PMC4188962/ /pubmed/23782652 http://dx.doi.org/10.1210/me.2013-1110 Text en Copyright © 2013 by The Endocrine Society This article has been published under the terms of the Creative Commons Attribution License (CC-BY (http://creativecommons.org/licenses/by/3.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright for this article is retained by the author(s). Author(s) grant(s) the Endocrine Society the exclusive right to publish the article and identify itself as the original publisher.
spellingShingle Original Research
Nordstrom, Sarah M.
Tran, Jennifer L.
Sos, Brandon C.
Wagner, Kay-Uwe
Weiss, Ethan J.
Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH
title Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH
title_full Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH
title_fullStr Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH
title_full_unstemmed Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH
title_short Disruption of JAK2 in Adipocytes Impairs Lipolysis and Improves Fatty Liver in Mice With Elevated GH
title_sort disruption of jak2 in adipocytes impairs lipolysis and improves fatty liver in mice with elevated gh
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188962/
https://www.ncbi.nlm.nih.gov/pubmed/23782652
http://dx.doi.org/10.1210/me.2013-1110
work_keys_str_mv AT nordstromsarahm disruptionofjak2inadipocytesimpairslipolysisandimprovesfattyliverinmicewithelevatedgh
AT tranjenniferl disruptionofjak2inadipocytesimpairslipolysisandimprovesfattyliverinmicewithelevatedgh
AT sosbrandonc disruptionofjak2inadipocytesimpairslipolysisandimprovesfattyliverinmicewithelevatedgh
AT wagnerkayuwe disruptionofjak2inadipocytesimpairslipolysisandimprovesfattyliverinmicewithelevatedgh
AT weissethanj disruptionofjak2inadipocytesimpairslipolysisandimprovesfattyliverinmicewithelevatedgh