Cargando…

Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea

BACKGROUND: The olive mouse Abrothrix olivacea is a cricetid rodent of the subfamily Sigmodontinae that inhabits a wide range of contrasting environments in southern South America, from aridlands to temperate rainforests. Along its distribution, it presents different geographic forms that make the o...

Descripción completa

Detalles Bibliográficos
Autores principales: Giorello, Facundo M, Feijoo, Matias, D’Elía, Guillermo, Valdez, Lourdes, Opazo, Juan C, Varas, Valeria, Naya, Daniel E, Lessa, Enrique P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189146/
https://www.ncbi.nlm.nih.gov/pubmed/24909751
http://dx.doi.org/10.1186/1471-2164-15-446
_version_ 1782338315254497280
author Giorello, Facundo M
Feijoo, Matias
D’Elía, Guillermo
Valdez, Lourdes
Opazo, Juan C
Varas, Valeria
Naya, Daniel E
Lessa, Enrique P
author_facet Giorello, Facundo M
Feijoo, Matias
D’Elía, Guillermo
Valdez, Lourdes
Opazo, Juan C
Varas, Valeria
Naya, Daniel E
Lessa, Enrique P
author_sort Giorello, Facundo M
collection PubMed
description BACKGROUND: The olive mouse Abrothrix olivacea is a cricetid rodent of the subfamily Sigmodontinae that inhabits a wide range of contrasting environments in southern South America, from aridlands to temperate rainforests. Along its distribution, it presents different geographic forms that make the olive mouse a good focal case for the study of geographical variation in response to environmental variation. We chose to characterize the kidney transcriptome because this organ has been shown to be associated with multiple physiological processes, including water reabsorption. RESULTS: Transcriptomes of thirteen kidneys from individuals from Argentina and Chile were sequenced using Illumina technology in order to obtain a kidney reference transcriptome. After combining the reads produced for each sample, we explored three assembly strategies to obtain the best reconstruction of transcripts, TrinityNorm and DigiNorm, which include its own normalization algorithms for redundant reads removal, and Multireads, which simply consist on the assembly of the joined reads. We found that Multireads strategy produces a less fragmented assembly than normalization algorithms but recovers fewer number of genes. In general, about 15000 genes were annotated, of which almost half had at least one coding sequence reconstructed at 99% of its length. We also built a list of highly expressed genes, of which several are involved in water conservation under laboratory conditions using mouse models. CONCLUSION: Based on our assembly results, Trinity's in silico normalization is the best algorithm in terms of cost-benefit returns; however, our results also indicate that normalization should be avoided if complete or nearly complete coding sequences of genes are desired. Given that this work is the first to characterize the transcriptome of any member of Sigmodontinae, a subfamily of cricetid rodents with about 400 living species, it will provide valuable resources for future ecological and evolutionary genomic analyses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-446) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4189146
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41891462014-10-09 Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea Giorello, Facundo M Feijoo, Matias D’Elía, Guillermo Valdez, Lourdes Opazo, Juan C Varas, Valeria Naya, Daniel E Lessa, Enrique P BMC Genomics Research Article BACKGROUND: The olive mouse Abrothrix olivacea is a cricetid rodent of the subfamily Sigmodontinae that inhabits a wide range of contrasting environments in southern South America, from aridlands to temperate rainforests. Along its distribution, it presents different geographic forms that make the olive mouse a good focal case for the study of geographical variation in response to environmental variation. We chose to characterize the kidney transcriptome because this organ has been shown to be associated with multiple physiological processes, including water reabsorption. RESULTS: Transcriptomes of thirteen kidneys from individuals from Argentina and Chile were sequenced using Illumina technology in order to obtain a kidney reference transcriptome. After combining the reads produced for each sample, we explored three assembly strategies to obtain the best reconstruction of transcripts, TrinityNorm and DigiNorm, which include its own normalization algorithms for redundant reads removal, and Multireads, which simply consist on the assembly of the joined reads. We found that Multireads strategy produces a less fragmented assembly than normalization algorithms but recovers fewer number of genes. In general, about 15000 genes were annotated, of which almost half had at least one coding sequence reconstructed at 99% of its length. We also built a list of highly expressed genes, of which several are involved in water conservation under laboratory conditions using mouse models. CONCLUSION: Based on our assembly results, Trinity's in silico normalization is the best algorithm in terms of cost-benefit returns; however, our results also indicate that normalization should be avoided if complete or nearly complete coding sequences of genes are desired. Given that this work is the first to characterize the transcriptome of any member of Sigmodontinae, a subfamily of cricetid rodents with about 400 living species, it will provide valuable resources for future ecological and evolutionary genomic analyses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-446) contains supplementary material, which is available to authorized users. BioMed Central 2014-06-08 /pmc/articles/PMC4189146/ /pubmed/24909751 http://dx.doi.org/10.1186/1471-2164-15-446 Text en © Giorello et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Giorello, Facundo M
Feijoo, Matias
D’Elía, Guillermo
Valdez, Lourdes
Opazo, Juan C
Varas, Valeria
Naya, Daniel E
Lessa, Enrique P
Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea
title Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea
title_full Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea
title_fullStr Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea
title_full_unstemmed Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea
title_short Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea
title_sort characterization of the kidney transcriptome of the south american olive mouse abrothrix olivacea
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189146/
https://www.ncbi.nlm.nih.gov/pubmed/24909751
http://dx.doi.org/10.1186/1471-2164-15-446
work_keys_str_mv AT giorellofacundom characterizationofthekidneytranscriptomeofthesouthamericanolivemouseabrothrixolivacea
AT feijoomatias characterizationofthekidneytranscriptomeofthesouthamericanolivemouseabrothrixolivacea
AT deliaguillermo characterizationofthekidneytranscriptomeofthesouthamericanolivemouseabrothrixolivacea
AT valdezlourdes characterizationofthekidneytranscriptomeofthesouthamericanolivemouseabrothrixolivacea
AT opazojuanc characterizationofthekidneytranscriptomeofthesouthamericanolivemouseabrothrixolivacea
AT varasvaleria characterizationofthekidneytranscriptomeofthesouthamericanolivemouseabrothrixolivacea
AT nayadaniele characterizationofthekidneytranscriptomeofthesouthamericanolivemouseabrothrixolivacea
AT lessaenriquep characterizationofthekidneytranscriptomeofthesouthamericanolivemouseabrothrixolivacea