Cargando…
Quantifying uncertainty in brain network measures using Bayesian connectomics
The wiring diagram of the human brain can be described in terms of graph measures that characterize structural regularities. These measures require an estimate of whole-brain structural connectivity for which one may resort to deterministic or thresholded probabilistic streamlining procedures. While...
Autores principales: | Janssen, Ronald J., Hinne, Max, Heskes, Tom, van Gerven, Marcel A. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189434/ https://www.ncbi.nlm.nih.gov/pubmed/25339896 http://dx.doi.org/10.3389/fncom.2014.00126 |
Ejemplares similares
-
Probabilistic Clustering of the Human Connectome Identifies Communities and Hubs
por: Hinne, Max, et al.
Publicado: (2015) -
Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates
por: Hinne, Max, et al.
Publicado: (2015) -
Gaussian mixture models and semantic gating improve reconstructions from human brain activity
por: Schoenmakers, Sanne, et al.
Publicado: (2015) -
Bayesian model averaging for nonparametric discontinuity design
por: Hinne, Max, et al.
Publicado: (2022) -
The missing link: Predicting connectomes from noisy and partially observed tract tracing data
por: Hinne, Max, et al.
Publicado: (2017)