Cargando…
Stimulating the Lip Motor Cortex with Transcranial Magnetic Stimulation
Transcranial magnetic stimulation (TMS) has proven to be a useful tool in investigating the role of the articulatory motor cortex in speech perception. Researchers have used single-pulse and repetitive TMS to stimulate the lip representation in the motor cortex. The excitability of the lip motor rep...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MyJove Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189624/ https://www.ncbi.nlm.nih.gov/pubmed/24962266 http://dx.doi.org/10.3791/51665 |
Sumario: | Transcranial magnetic stimulation (TMS) has proven to be a useful tool in investigating the role of the articulatory motor cortex in speech perception. Researchers have used single-pulse and repetitive TMS to stimulate the lip representation in the motor cortex. The excitability of the lip motor representation can be investigated by applying single TMS pulses over this cortical area and recording TMS-induced motor evoked potentials (MEPs) via electrodes attached to the lip muscles (electromyography; EMG). Larger MEPs reflect increased cortical excitability. Studies have shown that excitability increases during listening to speech as well as during viewing speech-related movements. TMS can be used also to disrupt the lip motor representation. A 15-min train of low-frequency sub-threshold repetitive stimulation has been shown to suppress motor excitability for a further 15-20 min. This TMS-induced disruption of the motor lip representation impairs subsequent performance in demanding speech perception tasks and modulates auditory-cortex responses to speech sounds. These findings are consistent with the suggestion that the motor cortex contributes to speech perception. This article describes how to localize the lip representation in the motor cortex and how to define the appropriate stimulation intensity for carrying out both single-pulse and repetitive TMS experiments. |
---|