Cargando…

Influence of temperature and humidity manipulation on chicken embryonic development

BACKGROUND: Temperature and relative humidity (RH) are very important factors affecting embryo development, hatchability, and posthatch performance. This study aimed at characterizing embryonic metabolic and behavioural response to a harsh incubation environment generated by manipulations (elevation...

Descripción completa

Detalles Bibliográficos
Autores principales: Noiva, Rute M, Menezes, António C, Peleteiro, Maria C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189721/
https://www.ncbi.nlm.nih.gov/pubmed/25267350
http://dx.doi.org/10.1186/s12917-014-0234-3
_version_ 1782338407321567232
author Noiva, Rute M
Menezes, António C
Peleteiro, Maria C
author_facet Noiva, Rute M
Menezes, António C
Peleteiro, Maria C
author_sort Noiva, Rute M
collection PubMed
description BACKGROUND: Temperature and relative humidity (RH) are very important factors affecting embryo development, hatchability, and posthatch performance. This study aimed at characterizing embryonic metabolic and behavioural response to a harsh incubation environment generated by manipulations (elevations and drops) in these two key factors. This study was aimed at establishing patterns of metabolic and behavioural response, as well as mortality and the development of malformations, all of which can potentially be used in monitoring incubating operations and diagnosing problems with faulty equipment. RESULTS: Of all the parameters monitored throughout embryonic development the ones shown to be most affected were: albumen-weight to egg-weight ratio (AR); yolk-weight to egg-weight ratio (YR); embryo-weight to egg-weight ratio (ER); heart rate (HR); voluntary movements per minute (VMM); mortality rates; malformation prevalence and type. The most significant changes in the evolution of AR and YR throughout incubation involved delay and reduction in the amplitude of the expected drop in albumen and yolk levels, reflecting lower nutrient consumption by the embryo. ER tended to grow more slowly and remain lower than the established normal, especially in embryos challenged with temperature treatments. HR and VMM were considered to be strong indicators of embryonic stress, as all treatments applied resulted in elevated heart rate and decreased embryo movement. Mortality rates for both temperature-related treatments were higher during the first four days of incubation. Changes in relative humidity have produced less radical effects on mortality. Malformation rates were higher for embryos subjected to high incubation temperatures and were most prominently related to the abdominal wall, head, skull and limbs. Overall, manipulations in environmental (incubator) temperature during incubation produced more drastic changes in embryo development than humidity-related manipulations, especially where mortality and malformation rates were concerned. CONCLUSIONS: This paper describes changes in embryonic metabolism and behaviour, as well as in mortality and malformation rates, in response to manipulations in environmental temperature and relative humidity. Together with further studies, these patterns may prove helpful in the diagnosis of equipment malfunctions relating to temperature or relative humidity.
format Online
Article
Text
id pubmed-4189721
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41897212014-10-09 Influence of temperature and humidity manipulation on chicken embryonic development Noiva, Rute M Menezes, António C Peleteiro, Maria C BMC Vet Res Research BACKGROUND: Temperature and relative humidity (RH) are very important factors affecting embryo development, hatchability, and posthatch performance. This study aimed at characterizing embryonic metabolic and behavioural response to a harsh incubation environment generated by manipulations (elevations and drops) in these two key factors. This study was aimed at establishing patterns of metabolic and behavioural response, as well as mortality and the development of malformations, all of which can potentially be used in monitoring incubating operations and diagnosing problems with faulty equipment. RESULTS: Of all the parameters monitored throughout embryonic development the ones shown to be most affected were: albumen-weight to egg-weight ratio (AR); yolk-weight to egg-weight ratio (YR); embryo-weight to egg-weight ratio (ER); heart rate (HR); voluntary movements per minute (VMM); mortality rates; malformation prevalence and type. The most significant changes in the evolution of AR and YR throughout incubation involved delay and reduction in the amplitude of the expected drop in albumen and yolk levels, reflecting lower nutrient consumption by the embryo. ER tended to grow more slowly and remain lower than the established normal, especially in embryos challenged with temperature treatments. HR and VMM were considered to be strong indicators of embryonic stress, as all treatments applied resulted in elevated heart rate and decreased embryo movement. Mortality rates for both temperature-related treatments were higher during the first four days of incubation. Changes in relative humidity have produced less radical effects on mortality. Malformation rates were higher for embryos subjected to high incubation temperatures and were most prominently related to the abdominal wall, head, skull and limbs. Overall, manipulations in environmental (incubator) temperature during incubation produced more drastic changes in embryo development than humidity-related manipulations, especially where mortality and malformation rates were concerned. CONCLUSIONS: This paper describes changes in embryonic metabolism and behaviour, as well as in mortality and malformation rates, in response to manipulations in environmental temperature and relative humidity. Together with further studies, these patterns may prove helpful in the diagnosis of equipment malfunctions relating to temperature or relative humidity. BioMed Central 2014-10-01 /pmc/articles/PMC4189721/ /pubmed/25267350 http://dx.doi.org/10.1186/s12917-014-0234-3 Text en © Noiva et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Noiva, Rute M
Menezes, António C
Peleteiro, Maria C
Influence of temperature and humidity manipulation on chicken embryonic development
title Influence of temperature and humidity manipulation on chicken embryonic development
title_full Influence of temperature and humidity manipulation on chicken embryonic development
title_fullStr Influence of temperature and humidity manipulation on chicken embryonic development
title_full_unstemmed Influence of temperature and humidity manipulation on chicken embryonic development
title_short Influence of temperature and humidity manipulation on chicken embryonic development
title_sort influence of temperature and humidity manipulation on chicken embryonic development
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189721/
https://www.ncbi.nlm.nih.gov/pubmed/25267350
http://dx.doi.org/10.1186/s12917-014-0234-3
work_keys_str_mv AT noivarutem influenceoftemperatureandhumiditymanipulationonchickenembryonicdevelopment
AT menezesantonioc influenceoftemperatureandhumiditymanipulationonchickenembryonicdevelopment
AT peleteiromariac influenceoftemperatureandhumiditymanipulationonchickenembryonicdevelopment