Cargando…

Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production

Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Reza, M. Toufiq, Werner, Maja, Pohl, Marcel, Mumme, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189747/
https://www.ncbi.nlm.nih.gov/pubmed/24962786
http://dx.doi.org/10.3791/51734
Descripción
Sumario:Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 L(CH4)/kg(VS) (VS: volatile solids) and 121 L( CH4)/kg(VS) at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kg(dry_biochar) was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.