Cargando…
Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats
Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190087/ https://www.ncbi.nlm.nih.gov/pubmed/25295592 http://dx.doi.org/10.1371/journal.pone.0109522 |
_version_ | 1782338459157921792 |
---|---|
author | Smith, Catherine A. Holahan, Matthew R. |
author_facet | Smith, Catherine A. Holahan, Matthew R. |
author_sort | Smith, Catherine A. |
collection | PubMed |
description | Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats. |
format | Online Article Text |
id | pubmed-4190087 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41900872014-10-10 Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats Smith, Catherine A. Holahan, Matthew R. PLoS One Research Article Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats. Public Library of Science 2014-10-08 /pmc/articles/PMC4190087/ /pubmed/25295592 http://dx.doi.org/10.1371/journal.pone.0109522 Text en © 2014 Smith, Holahan http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Smith, Catherine A. Holahan, Matthew R. Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats |
title | Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats |
title_full | Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats |
title_fullStr | Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats |
title_full_unstemmed | Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats |
title_short | Reduced Hippocampal Dendritic Spine Density and BDNF Expression following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Male Long Evans Rats |
title_sort | reduced hippocampal dendritic spine density and bdnf expression following acute postnatal exposure to di(2-ethylhexyl) phthalate in male long evans rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190087/ https://www.ncbi.nlm.nih.gov/pubmed/25295592 http://dx.doi.org/10.1371/journal.pone.0109522 |
work_keys_str_mv | AT smithcatherinea reducedhippocampaldendriticspinedensityandbdnfexpressionfollowingacutepostnatalexposuretodi2ethylhexylphthalateinmalelongevansrats AT holahanmatthewr reducedhippocampaldendriticspinedensityandbdnfexpressionfollowingacutepostnatalexposuretodi2ethylhexylphthalateinmalelongevansrats |