Cargando…

The Kill Date as a Management Tool for Cover Cropping Success

Integrating cover crops (CC) in rotations provides multiple ecological services, but it must be ensured that management does not increase pre-emptive competition with the subsequent crop. This experiment was conducted to study the effect of kill date on: (i) CC growth and N content; (ii) the chemica...

Descripción completa

Detalles Bibliográficos
Autores principales: Alonso-Ayuso, María, Gabriel, José Luis, Quemada, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190126/
https://www.ncbi.nlm.nih.gov/pubmed/25296333
http://dx.doi.org/10.1371/journal.pone.0109587
Descripción
Sumario:Integrating cover crops (CC) in rotations provides multiple ecological services, but it must be ensured that management does not increase pre-emptive competition with the subsequent crop. This experiment was conducted to study the effect of kill date on: (i) CC growth and N content; (ii) the chemical composition of residues; (iii) soil inorganic N and potentially mineralizable N; and (iv) soil water content. Treatments were fallow and a CC mixture of barley (Hordeum vulgare L.) and vetch (Vicia sativa L.) sown in October and killed on two different dates in spring. Above-ground biomass and chemical composition of CC were determined at harvest, and ground cover was monitored based on digital image analysis. Soil mineral N was determined before sowing and after killing the CC, and potentially mineralizable N was measured by aerobic incubation at the end of the experiment. Soil water content was monitored daily to a depth of 1.1 m using capacitance sensors. Under the present conditions of high N availability, delaying kill date increased barley above-ground biomass and N uptake from deep soil layers; little differences were observed in vetch. Postponing kill date increased the C/N ratio and the fiber content of plant residues. Ground cover reached >80% by the first kill date (∼1250°C days). Kill date was a means to control soil inorganic N by balancing the N retained in the residue and soil, and showed promise for mitigating N losses. The early kill date decreased the risk of water and N pre-emptive competition by reducing soil depletion, preserving rain harvested between kill dates and allowing more time for N release in spring. The soil potentially mineralizable N was enhanced by the CC and kill date delay. Therefore kill date is a crucial management variable for maximizing the CC benefits in agricultural systems.