Cargando…

Hepatitis B virus X protein specially regulates the sialyl lewis a synthesis among glycosylation events for metastasis

BACKGROUND: The metastasis of hematogenous cancer cells is associated with abnormal glycosylation such as sialyl lewis antigens. Although the hepatitis B virus X protein (HBx) plays important role in liver disease, the precise function of HBx on aberrant glycosylation for metastasis remains unclear....

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Tae-Wook, Kim, Seok-Jo, Choi, Hee-Jung, Song, Kwon-Ho, Jin, Un-Ho, Yu, Dae-Yeul, Seong, Je-Kyung, Kim, Jong-Guk, Kim, Keuk-Jun, Ko, Jeong-Heon, Ha, Ki-Tae, Lee, Young-Choon, Kim, Cheorl-Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190352/
https://www.ncbi.nlm.nih.gov/pubmed/25255877
http://dx.doi.org/10.1186/1476-4598-13-222
Descripción
Sumario:BACKGROUND: The metastasis of hematogenous cancer cells is associated with abnormal glycosylation such as sialyl lewis antigens. Although the hepatitis B virus X protein (HBx) plays important role in liver disease, the precise function of HBx on aberrant glycosylation for metastasis remains unclear. METHODS: The human hepatocellular carcinoma tissues, HBx transgenic mice and HBx-transfected cells were used to check the correlation of expressions between HBx and Sialyl lewis antigen for cancer metastasis. To investigate whether expression levels of glycosyltransferases induced in HBx-transfected cells are specifically associated with sialyl lewis A (SLA) synthesis, which enhances metastasis by interaction of liver cancer cells with endothelial cells, ShRNA and siRNAs targeting specific glycosyltransferases were used. RESULTS: HBx expression in liver cancer region of HCC is associated with the specific synthesis of SLA. Furthermore, the SLA was specifically induced both in liver tissues from HBx-transgenic mice and in in vitro HBx-transfected cells. HBx increased transcription levels and activities of α2-3 sialyltransferases (ST3Gal III), α1-3/4 fucosyltransferases III and VII (FUT III and VII) genes, which were specific for SLA synthesis, allowing dramatic cell-cell adhesion for metastatic potential. Interestingly, HBx specifically induced expression of N-acetylglucosamine-β1-3 galactosyltransferase V (β1-3GalT 5) gene associated with the initial synthesis of sialyl lewis A, but not β1-4GalT I. The β1-3GalT 5 shRNA suppressed SLA expression by HBx, blocking the adhesion of HBx-transfected cells to the endothelial cells. Moreover, β1-3GalT 5 silencing suppressed lung metastasis of HBx-transfected cells in in vivo lung metastasis system. CONCLUSION: HBx targets the specific glycosyltransferases for the SLA synthesis and this process regulates hematogenous cancer cell adhesion to endothelial cells for cancer metastasis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1476-4598-13-222) contains supplementary material, which is available to authorized users.