Cargando…

Transactivating-transduction protein-polyethylene glycol modified liposomes traverse the blood-spinal cord and blood-brain barriers☆

Naive liposomes can cross the blood-brain barrier and blood-spinal cord barrier in small amounts. Liposomes modified by a transactivating-transduction protein can deliver antibiotics for the treatment of acute bacterial infection-induced brain inflammation. Liposomes conjugated with polyethylene gly...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Xianhu, Wang, Chunyuan, Feng, Shiqing, Chang, Jin, Kong, Xiaohong, Liu, Yang, Gao, Shijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190860/
https://www.ncbi.nlm.nih.gov/pubmed/25317128
http://dx.doi.org/10.3969/j.issn.1673-5374.2012.35.006
Descripción
Sumario:Naive liposomes can cross the blood-brain barrier and blood-spinal cord barrier in small amounts. Liposomes modified by a transactivating-transduction protein can deliver antibiotics for the treatment of acute bacterial infection-induced brain inflammation. Liposomes conjugated with polyethylene glycol have the capability of long-term circulation. In this study we prepared transactivating-transduction protein-polyethylene glycol-modified liposomes labeled with fluorescein isothiocyanate. Thus, liposomes were characterized by transmembrane, long-term circulation and fluorescence tracing. Uptake, cytotoxicity, and the ability of traversing blood-spinal cord and blood-brain barriers were observed following coculture with human breast adenocarcinoma cells (MCF-7). Results demonstrated that the liposomes had good biocompatibility, and low cytotoxicity when cocultured with human breast adenocarcinoma cells. Liposomes could traverse cell membranes and entered the central nervous system and neurocytes through the blood-spinal cord and blood-brain barriers of rats via the systemic circulation. These results verified that fluorescein isothiocyanate-modified transactivating-transduction protein-polyethylene glycol liposomes have the ability to traverse the blood-spinal cord and blood-brain barriers.