Cargando…
Treatment with Actovegin improves spatial learning and memory in rats following transient forebrain ischaemia
This study aimed to investigate whether Actovegin, which is a deproteinized ultrafiltrate derived from calf blood, demonstrates neuroprotective effects in a rat model of transient global cerebral ischaemia. Forty Sprague Dawley rats were subjected to four-vessel occlusion to induce transient global...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190908/ https://www.ncbi.nlm.nih.gov/pubmed/24797227 http://dx.doi.org/10.1111/jcmm.12297 |
Sumario: | This study aimed to investigate whether Actovegin, which is a deproteinized ultrafiltrate derived from calf blood, demonstrates neuroprotective effects in a rat model of transient global cerebral ischaemia. Forty Sprague Dawley rats were subjected to four-vessel occlusion to induce transient global cerebral ischaemia followed by either saline or Actovegin treatment. Sham operations were performed on 15 rats. Actovegin (200 mg/kg) or saline was administered 6 hrs after carotid artery occlusion and then daily until Day 40. Learning and memory were evaluated using the Morris water maze test over two different 5-day periods, and grip strength testing was also performed to control for potential motor impairments. Rat brains were harvested for histological analysis on Day 68. In comparison to controls, Actovegin-treated rats exhibited a decreased latency to reach the hidden platform on the second learning trial of water maze testing (46.82 ± 6.18 versus 27.64 ± 4.53 sec., P < 0.05; 38.3 ± 8.23 versus 13.37 ± 2.73 sec., P < 0.01 for the first and second 5-day testing periods, respectively). In addition, Actovegin-treated rats spent more time in the platform quadrant than saline-treated rats during memory trials (P < 0.05). No differences in grip strength were detected. Histological analyses demonstrated increased cell survival in the CA1 region of the hippocampus following Actovegin treatment (left hemisphere, 166 ± 50 versus 332 ± 27 cells, P < 0.05; right hemisphere, 170 ± 45 versus 307 ± 28 cells, P < 0.05, in saline- versus Actovegin-treated rats, respectively). In rats, Actovegin treatment improves spatial learning and memory following cerebral ischaemia, which may be related to hippocampal CA1 neuroprotection. |
---|