Cargando…

Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments

Magnetic tweezers are a powerful single-molecule technique that allows real-time quantitative investigation of biomolecular processes under applied force. High pulling forces exceeding tens of picoNewtons may be required, e.g. to probe the force range of proteins that actively transcribe or package...

Descripción completa

Detalles Bibliográficos
Autores principales: Janissen, Richard, Berghuis, Bojk A., Dulin, David, Wink, Max, van Laar, Theo, Dekker, Nynke H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191378/
https://www.ncbi.nlm.nih.gov/pubmed/25140010
http://dx.doi.org/10.1093/nar/gku677
_version_ 1782338650172817408
author Janissen, Richard
Berghuis, Bojk A.
Dulin, David
Wink, Max
van Laar, Theo
Dekker, Nynke H.
author_facet Janissen, Richard
Berghuis, Bojk A.
Dulin, David
Wink, Max
van Laar, Theo
Dekker, Nynke H.
author_sort Janissen, Richard
collection PubMed
description Magnetic tweezers are a powerful single-molecule technique that allows real-time quantitative investigation of biomolecular processes under applied force. High pulling forces exceeding tens of picoNewtons may be required, e.g. to probe the force range of proteins that actively transcribe or package the genome. Frequently, however, the application of such forces decreases the sample lifetime, hindering data acquisition. To provide experimentally viable sample lifetimes in the face of high pulling forces, we have designed a novel anchoring strategy for DNA in magnetic tweezers. Our approach, which exploits covalent functionalization based on heterobifunctional poly(ethylene glycol) crosslinkers, allows us to strongly tether DNA while simultaneously suppressing undesirable non-specific adhesion. A complete force and lifetime characterization of these covalently anchored DNA-tethers demonstrates that, compared to more commonly employed anchoring strategies, they withstand 3-fold higher pulling forces (up to 150 pN) and exhibit up to 200-fold higher lifetimes (exceeding 24 h at a constant force of 150 pN). This advance makes it possible to apply the full range of biologically relevant force scales to biomolecular processes, and its straightforward implementation should extend its reach to a multitude of applications in the field of single-molecule force spectroscopy.
format Online
Article
Text
id pubmed-4191378
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-41913782015-04-02 Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments Janissen, Richard Berghuis, Bojk A. Dulin, David Wink, Max van Laar, Theo Dekker, Nynke H. Nucleic Acids Res Methods Online Magnetic tweezers are a powerful single-molecule technique that allows real-time quantitative investigation of biomolecular processes under applied force. High pulling forces exceeding tens of picoNewtons may be required, e.g. to probe the force range of proteins that actively transcribe or package the genome. Frequently, however, the application of such forces decreases the sample lifetime, hindering data acquisition. To provide experimentally viable sample lifetimes in the face of high pulling forces, we have designed a novel anchoring strategy for DNA in magnetic tweezers. Our approach, which exploits covalent functionalization based on heterobifunctional poly(ethylene glycol) crosslinkers, allows us to strongly tether DNA while simultaneously suppressing undesirable non-specific adhesion. A complete force and lifetime characterization of these covalently anchored DNA-tethers demonstrates that, compared to more commonly employed anchoring strategies, they withstand 3-fold higher pulling forces (up to 150 pN) and exhibit up to 200-fold higher lifetimes (exceeding 24 h at a constant force of 150 pN). This advance makes it possible to apply the full range of biologically relevant force scales to biomolecular processes, and its straightforward implementation should extend its reach to a multitude of applications in the field of single-molecule force spectroscopy. Oxford University Press 2014-10-13 2014-08-12 /pmc/articles/PMC4191378/ /pubmed/25140010 http://dx.doi.org/10.1093/nar/gku677 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods Online
Janissen, Richard
Berghuis, Bojk A.
Dulin, David
Wink, Max
van Laar, Theo
Dekker, Nynke H.
Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments
title Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments
title_full Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments
title_fullStr Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments
title_full_unstemmed Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments
title_short Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments
title_sort invincible dna tethers: covalent dna anchoring for enhanced temporal and force stability in magnetic tweezers experiments
topic Methods Online
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191378/
https://www.ncbi.nlm.nih.gov/pubmed/25140010
http://dx.doi.org/10.1093/nar/gku677
work_keys_str_mv AT janissenrichard invinciblednatetherscovalentdnaanchoringforenhancedtemporalandforcestabilityinmagnetictweezersexperiments
AT berghuisbojka invinciblednatetherscovalentdnaanchoringforenhancedtemporalandforcestabilityinmagnetictweezersexperiments
AT dulindavid invinciblednatetherscovalentdnaanchoringforenhancedtemporalandforcestabilityinmagnetictweezersexperiments
AT winkmax invinciblednatetherscovalentdnaanchoringforenhancedtemporalandforcestabilityinmagnetictweezersexperiments
AT vanlaartheo invinciblednatetherscovalentdnaanchoringforenhancedtemporalandforcestabilityinmagnetictweezersexperiments
AT dekkernynkeh invinciblednatetherscovalentdnaanchoringforenhancedtemporalandforcestabilityinmagnetictweezersexperiments