Cargando…
Differential regulation of c-Met signaling pathways for synovial cell function
We previously demonstrated that blocking the hepatocyte growth factor (HGF) receptor, c-Met, using a HGF antagonist, NK4, inhibited arthritis in a rheumatoid arthritis (RA) model mice. In the present study, we investigated the role of c-Met signaling in synovial cell function. We demonstrated that s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192143/ https://www.ncbi.nlm.nih.gov/pubmed/25332857 http://dx.doi.org/10.1186/2193-1801-3-554 |
Sumario: | We previously demonstrated that blocking the hepatocyte growth factor (HGF) receptor, c-Met, using a HGF antagonist, NK4, inhibited arthritis in a rheumatoid arthritis (RA) model mice. In the present study, we investigated the role of c-Met signaling in synovial cell function. We demonstrated that synovial tissues from RA patients and MH7A cells, a human RA synovial cell line, expressed HGF and c-Met. HGF and c-Met expression in RA synovium was increased compared to osteoarthritis synovium suggesting increased c-Met signaling in RA synovial cells. The c-Met inhibitor, SU11274, inhibited ERK1/2 and AKT phosphorylation in HGF-stimulated MH7A cells. MEK and PI3K inhibitors suppressed production of matrix metalloproteinase-3 (MMP-3), vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2) by MH7A cells, suggesting that c-Met-MEK-ERK and c-Met-PI3K-AKT pathways are involved positively regulating MH7A cell function. Although SU11274 suppressed MMP-3 and VEGF production it enhanced PGE2 production by MH7A cells suggesting that negative regulation by c-Met signaling, independent of the MEK-ERK and PI3K-AKT pathways, is involved in PGE2 production. Blocking c-Met signaling may be therapeutically useful to inhibit angiogenesis and cartilage and bone destruction by inhibiting VEGF and MMP-3 production, while enhancing PGE2 production in synovial cells in RA. |
---|